Atrial fibrillation is the most common sustained arrhythmia associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. The role of atrial remodeling has emerged as the new pathophysiological mechanism of atrial fibrillation. Electrical remodeling and structural remodeling will increase the probability of generating multiple atrial wavelets by enabling rapid atrial activation and dispersion of refractoriness. MicroRNAs (miRNAs) are small non-coding RNAs of 20–25 nucleotides in length that regulate expression of target genes through sequence-specific hybridization to the 3’ untranslated region of messenger RNAs and either block translation or direct degradation of their target messenger RNA. They have also been implicated in a variety of pathological conditions, such as arrhythmogenesis and atrial fibrillation. Target genes of miRNAs have the potential to affect atrial fibrillation vulnerability.

1.
Murgatroyd FD, Camm AJ: Atrial arrhythmias. Lancet 1993;341:1317–1322.
2.
Godtfredsen J: Etiology, course and prognosis. A follow-up study of 1,212 cases; thesis, University of Copenhagen, 1975.
3.
Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA: Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92:1954–1968.
4.
Brundel BJJM, Van Gelder IC, Henning RH, Tuinenburg AE, Tieleman RG, Wietses M, Grandjean JG, Van Gilst WH, Crijns HJGM: Ion channel remodeling is related to intra-operative atrial refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 2001;103:684–690.
5.
Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M: Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157–3163.
6.
Thijssen VLJL, Ausma J, Liu GS, Allessie M, Eys GJJM, Borgers M: Structural changes of atrial myocardium during chronic atrial fibrillation. Cardiovasc Pathol 2000;9:17–28.
7.
Moe GK, Abildskov JA: Experimental and laboratory reports. Atrial fibrillation as a self-sustained arrhythmia independent of focal discharge. Am Heart J 1959;58:59–70.
8.
Nattel S, Maguy A, Le Bouter S, Yeh YH: Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 2007;87:425–456.
9.
Yue L, Feng J, Gaspo R, Li G-R, Wang Z, Nattel S: Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997;81:512–525.
10.
Cha TJ, Ehrlich JR, Chartier D, Xiao L, Nattel S: Kir3-based inward rectifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation 2006;113:1730–1737.
11.
Velden HM, Ausma J, Rook MB, Hellemons AJ, vanVeen TA, Allessie MA, Jongsma HJ: Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 2000;46:476–486.
12.
Gaspo R, Bosch RF, Bou-Abboud E, Nattel S: Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 1997;81:1045–1052.
13.
Li D, Fareh S, Leung TK, Nattel S: Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 1999;100:87–95.
14.
Shinagawa K, Shi YF, Tardif JC, Leung T-K, Nattel S: Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation 2002;105:2672–2678.
15.
Zou R, Kneller J, Leon LJ, Nattel S: Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am J Physiol 2005;289:H1002–H1012.
16.
Shi Y, Ducharme A, Li D, Gaspo R, Nattel S, Tardif JC: Remodeling of atrial dimensions and emptying function in canine models of atrial fibrillation. Cardiovasc Res 2001;52:217–225.
17.
Henry WL, Morganroth J, Pearlman AS, Clark CE, Redwood DR, Itscoitz SB, Epstein SE: Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 1976;53:273–279.
18.
Lai LP, Su MJ, Lin JL, Tsai CH, Lin FY, Chen YS, Hwang JJ, Huang SK, Tseng YZ, Lien WP: Measurement of funny current (I(f)) channel mRNA in human atrial tissue: correlation with left atrial filling pressure and atrial fibrillation. J Cardiovasc Electrophysiol 1999;10:947–953.
19.
Zicha S, Fernández-Velasco M, Lonardo G, Heureux N, Nattel S: Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 2005;66:472–481.
20.
Stambler BS, Fenelon G, Shepard RK, Clemo HF, Guiraudon CM: Characterization of sustained atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J Cardiovasc Electrophysiol 2003;14:499–507.
21.
Yeh YH, Wakili R, Qi X, Chartier D, Boknik P, Ravens U, Coutu P, Dobrev D, Nattel S: Calcium handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 2008;1:93–102.
22.
Chen YJ, Chen SA, Chen YC, Yeh HI, Chan P, Chang MS, Lin CI: Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: implication in initiation of atrial fibrillation. Circulation 2001;104:2849–2854.
23.
Coutu P, Chartier D, Nattel S: Comparison of Ca2+-handling properties of canine pulmonary vein and left atrial cardiomyocytes. Am J Physiol 2006;291:H2290–H2300.
24.
Nattel S, Quantz MA: Pharmacological response of quinidine induced early afterdepolarisations in canine cardiac Purkinje fibres: insights into underlying ionic mechanisms. Cardiovasc Res 1988;22:808–817.
25.
Satoh T, Zipes DP: Cesium-induced atrial tachycardia degenerating into atrial fibrillation in dogs: atrial torsades de pointes? J Cardiovasc Electrophysiol 1998;9:970–975.
26.
Burashnikov A, Antzelevitch C: Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation 2003;107:2355–2360.
27.
Nattel S: New ideas about atrial fibrillation 50 years on. Nature 2002;415:219–226.
28.
Burstein B, Qi XY, Yeh YH, Calderone A, Nattel S: Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc Res 2007;76:442–452.
29.
Dobrev D, Graf E, Wettwer E, Himmel HM, Hla O, Doerfel C, Christ T, Schler S, Ravens U: Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (I(KACh)) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(KACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 2001;104:2551–2557.
30.
Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens U: The G-protein gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 2005;112:3697–3706.
31.
Sun H, Gaspo R, Leblanc N, Nattel S: Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation 1998;98:719–727.
32.
Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S: Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 1999;84:776–784.
33.
Christ T, Boknik P, Wöhrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D: L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 2004;110:2651–2657.
34.
Brundel BJ, Ausma J, van GelderI C, Vander WJJ, van Gilst WH, Crijns HJ, Henning RH: Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc Res 2002;54:380–389.
35.
Kneller J, Sun H, Leblanc N, Nattel S: Remodeling of Ca2+-handling by atrial tachycardia: evidence for a role in loss of rate-adaptation. Cardiovasc Res 2002;54:416–426.
36.
Schotten U, Haase H, Frechen D, Greiser M, Stellbrink C, Vazquez-Jimenez JF, Morano I, Allessie MA, Hanrath P: The L-type Ca2+-channel subunits alpha1C and beta 2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 2003;35:437–443.
37.
Greiser M, Halaszovich CR, Frechen D, Boknik P, Ravens U, Dobrev D, Lückhoff A, Schotten U: Pharmacological evidence for altered src kinase regulation of ICa,L in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 2007;375:383–392.
38.
Gaborit N, Steenman M, Lamirault G, LeMeur N, LeBouter S, Lande G, Léger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S: Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 2005;112:471–481.
39.
Bosch RF, Scherer CR, Rüb N, Wöhrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V: Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces ICa,L and Ito in rapid atrial pacing in rabbits. J Am Coll Cardiol 2003;41:858–869.
40.
Carnes CA, Janssen PM, Ruehr ML, Nakayama H, Nakayama T, Haase H, Bauer JA, Chung MK, Fearon IM, Gillinov AM, Hamlin RL, Van Wagoner DR: Atrial glutathione content, calcium current, and contractility. J Biol Chem 2007;282:28063–28073.
41.
Hara M, Shvilkin A, Rosen MR, Danilo PJ, Boyden PA: Steady-state and nonsteady-state action potentials in fibrillating canine atrium: abnormal rate adaptation and its possible mechanisms. Cardiovasc Res 1999;42:455–469.
42.
Kneller J, Zou R, Vigmond EJ, Wang Z, Leon LJ, Nattel S: Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res 2002;90:E73–E87.
43.
Yeh Y-H, Lemola K, Nattel S: Vagal atrial fibrillation. Acta Cardiol Sin 2007;23:1–12.
44.
Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hébert TE, Nattel S: Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. J Physiol 2004;557:583–597.
45.
Voigt N, Maguay A, Yeh YH, Qi X, Ravens U, Dobrev D, Nattel S: Changes in IK,Ach single channel activity with atrial tachycardia remodeling in canine atrial cardiomyocytes. Cardiovasc Res 2008;77:35–43.
46.
Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, Strasser RH, Ravens U, Dobrev D: Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,Ach channels in patients with chronic atrial fibrillation. Cardiovasc Res 2007;74:426–437.
47.
Wu G, Huang CX, Tang YH, Jiang H, Wan J, Chen H, Xie Q, Huang ZR: Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation. Chin Med J 2005;118:1161–1166.
48.
Balana B, Dobrev D, Wettwer E, Christ T, Knaut M, Ravens U: Decreased ATP-sensitive K+ current density during chronic human atrial fibrillation. J Mol Cell Cardiol 2003;35:1399–1405.
49.
Brundel BJ, van GelderI C, Henning RH, Tuinenburg AE, Wietses M, Grandjean JG, Wilde AA, van Gilst WH, Crijns HJ: Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol 2001;37:926–932.
50.
Goette A, Arndt M, Rocken C, Staack T, Bechtloff R, Reinhold D, Huth C, Ansorge S, Klein HU, Lendecke lU: Calpains and cytokines in fibrillating human atria. Am J Physiol 2002;283:H264–H272.
51.
Rossow CF, Dilly KW, Santana LF: Differential calcineurin/NFATc3 activity contributes to the Ito transmural gradient in the mouse heart. Circ Res 2006;98:1306–1313.
52.
Bukowska A, Lendecke lU, Hirte D, Wolke C, Striggow F, Röhnert P, Huth C, Klein HU, Goette A: Activation of the calcineurin signaling pathway induces atrial hypertrophy during atrial fibrillation. Cell Mol Life Sci 2006;63:333–342.
53.
Burstein B, Nattel S: Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 2008;51:802–809.
54.
Katz AM: Proliferative signaling and disease progression in heart failure. Circ J 2002;66:225–231.
55.
Xiao HD, Fuchs S, Campbell DJ, Lewis W, Dudley SC Jr, Kasi VS, Hoit BD, Keshelava G, Zhao H, Capecchi MR, Bernstein KE: Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol 2004;165:1019–1032.
56.
Hunyady L, Catt KJ: Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 2006;20:953–970.
57.
Rosenkranz S: TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004;63:423–432.
58.
Attisano L, Wrana JL: Signal transduction by the TGF-beta superfamily. Science 2002;296:1646–1647.
59.
Verheule S, Sato T, Everett TIV, Engle SK, Otten D, Rubart-von der Lohe M, Nakajima HO, Nakajima H, Field LJ, Olgin JE: Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 2004;94:1458–1465.
60.
Burstein B, Libby E, Calderone A, Nattel S: Atrial fibroblasts are different from ventricular: a potential contributor to atrial-ventricular remodeling differences? Circulation 2008;117:1630–1641.
61.
Ahmed MS, Øie E, Vinge LE, Yndestad A, Øystein Andersen G, Andersson Y, Attramadal T, Attramadal H: Connective tissue growth factor: a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. J Mol Cell Cardiol 2004;36:393–404.
62.
Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH: CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 2000;32:1805–1819.
63.
Wetze lU, Boldt A, Lauschke J, Weig lJ, Schirdewahn P, Dorszewski A, Doll N, Hindricks G, Dhein S, Kottkamp H: Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different aetiologies. Heart 2005;91:166–170.
64.
Firouzi M, Ramanna H, Kok B, Jongsma HJ, Koeleman BP, Doevendans PA, Groenewegen WA, Hauer RN: Association of human connexin 40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ Res 2004;95:e29–e33.
65.
Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM, Ebihara L, Bai D: Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 2006;354:2677–2688.
66.
Ambros V: The functions of animal microRNAs. Nature 2004;431:350–355.
67.
Yang BF, Lu YJ, Wang ZG: MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol 2009;36:951–960.
68.
Wang Z: MicroRNAs: a matter of life or death. World J Biol Chem 2010;2:41–54.
69.
Yang B, Lu Y, Wang Z: Control of cardiac excitability by microRNAs. Cardiovasc Res 2008;79:571–580.
70.
Wang Z, Luo X, Lu Y, Yang B: miRNAs at the heart of the matter. J Mol Med 2008;86:772–783.
71.
Condorelli G, Latronico MV, Dorngmon D: microRNAs in heart disease: putative novel therapeutic targets? Eur Heart J 2010;31:649–658.
72.
Heneghan HM, Miller N, Kerin MJ: MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 2010;10:543–550.
73.
Ryan BM, Robles AI, Harris CC: Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010;10:389–402.
74.
Provost P: MicroRNAs as a molecular basis for mental retardation, Alzheimer’s and prion diseases. Brain Res 2010;1338:58–66.
75.
Hugon J, Paquet C: Targeting miRNAs in Alzheimer’s disease. Expert Rev Neurother 2008;8:1615–1616.
76.
Liang Y, Ridzon D, Wong L, Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007;8:166.
77.
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009;460:705–710.
78.
Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 2009;119:2357–2366.
79.
Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D: microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 2008;105:17830–17835.
80.
Lu H, Buchan RJ, Cook SA: MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 2010;86:410–420.
81.
Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M, Feldman DS, Schmittgen TD, Elton TS: The human angiotensin II type 1 receptor +1166A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 2007;282:24262–24269.
82.
Shan H, Zhang Y, Lu Y, Zhang Y, Pan Z, Cai B, Wang N, Li X, Feng T, Hong Y, Yang B: Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res 2009;83:465–472.
83.
Wang Z, Lu Y, Yang B: MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 2011;89:710–721.
84.
Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F: Control of experimental atrial fibrillation by micro RNA-328. Circulation, in press.
85.
Lu YJ, Zhang Y, Wang N, Pan ZW, Yang BF: The role MiR-328 in atrial fibrillation via repressing caveolin-3 expression. J Mol Cell Cardiol 2008;44:736.
86.
Yang B, Lin H, Xiao J, Luo X, Li B, Lu Y: The muscle-specific microRNA miR-1 causes cardiac arrhythmias by targeting GJA1 and KCNJ2 genes. Nat Med 2007;13:486–491.
87.
Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007;129:303–317.
88.
Terentyev D, Belevych AE, Terentyeva R, Martin MM, Malana GE, Kuhn DE: miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 2009;104:514–521.
89.
Voigt N, Trausch A, Knaut M, Matschke K, Varró A, van Wagoner DR, Nattel S, Ravens U, Dobrev D: Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 2010;3:472–480.
90.
Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A: Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 2009;6:1802–1809.
91.
Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N: MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 2007;282:12363–12367.
92.
Wang Z, Fermini B, Nattel S: Delayed rectifier outward current and repolarization in human atrial myocytes. Circ Res 1993;73:276–285.
93.
Wang Z, Fermini B, Nattel S: Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc Res 1994;28:1540–1546.
94.
Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G: MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 2010;106:166–175.
95.
Luo X, Lin H, Lu Y, Li B, Xiao J, Yang B: Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 2007;212:358–367.
96.
Xiao L, Xiao J, Luo X, Lin H, Wang Z, Nattel S: Feedback remodeling of cardiac potassium current expression: a novel potential mechanism for control of repolarization reserve. Circulation 2008;118:983–992.
97.
Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY: KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 2003;299:251–254.
98.
Ravn LS, Aizawa Y, Pollevick GD, Hofman-Bang J, Cordeiro JM, Dixen U: Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm 2008;5:427–435.
99.
Luo X, Pan Z, Xiao J, Zhang J, Lu Y, Yang B: Critical role of microRNAs miR-26 and miR-101 in atrial electrical remodeling in experimental atrial fibrillation. Circulation 2010;122:A19345.
100.
Luo X, Zhang H, Xiao J, Wang Z: Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications. Cell Physiol Biochem 2010;25:571–586.
101.
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature 2008;456:980–984.
102.
Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009;82:21–29.
103.
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS: Dysregulation of microRNAs following myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008;105:13027–13032.
104.
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der MadeI E: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009;104:170–178.
105.
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008;22:3242–3254.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.