The ‘no free lunch theorem’ claims that for the set of all problems no algorithm performs better than random search and, thus, selection can be advantageous only on a limited set of problems. In this paper we investigate how the topological structure of the environment influences algorithmic efficiency. We study the performance of algorithms, using selective learning, reinforcement learning, and their combinations, in random, scale-free, and scale-free small world (SFSW) environments. The learning problem is to search for novel, not-yet-found information. We ran our experiments on a large news site and on its downloaded portion. Controlled experiments were performed on this downloaded portion: we modified the topology, but preserved the publication time of the news. Our empirical results show that the selective learning is the most efficient in SFSW topology. In non-small world topologies, however, the combination of the selective and reinforcement learning algorithms performs the best.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.