Skip Nav Destination
Close Modal
Update search
Filter
All
- All
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
All
- All
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
All
- All
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
All
- All
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
All
- All
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
All
- All
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
Date
Availability
1-3 of 3
Keywords: Foam cells
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Subject Area:
Further Areas
Journal:
Cellular Physiology and Biochemistry
Cellular Physiology and Biochemistry (2016) 39 (5): 2065–2076.
Published Online: 31 October 2016
... on ox-LDL-induced macrophage lipid accumulation and apoptosis has not been revealed. Aims: This study aimed to explore the role of luteolin in ox-LDL-induced macrophage-derived foam cell formation and apoptosis and to delineate the underlying mechanism. Methods: Murine RAW264.7 cells were stimulated...
Journal Articles
Subject Area:
Further Areas
Journal:
Cellular Physiology and Biochemistry
Cellular Physiology and Biochemistry (2015) 36 (5): 1821–1834.
Published Online: 13 July 2015
..., and this activation was affirmed to account for the intracellular accumulation of cholesterol using RNAi technique. Conclusion: our study suggests that enhanced FN in lesions facilitates foam cell formation due to dysregulation of the endogenous sterol response pathway by activation of ER stress, and confirms...
Journal Articles
Subject Area:
Further Areas
Journal:
Cellular Physiology and Biochemistry
Cellular Physiology and Biochemistry (2011) 27 (3-4): 363–372.
Published Online: 01 April 2011
...Francisco J.O. Rios; Magnus Gidlund; Sonia Jancar The uptake of oxLDL by CD36 is not regulated by intracellular levels of cholesterol, leading to macrophage differentiation into foam cells which play a major role in atherosclerosis. Furthermore, oxLDL competes with PAF in macrophages for binding...