Background: Heat causes airway damage during inhalation injury because of bronchial epithelial cell damage. Accumulating evidence shows that mitochondrial uniporter (MCU) is involved in cell damage. We investigated the MCU activity after heat treatment and assessed whether Astragaloside-IV (AS-IV) suppresses heat-induced apoptosis in bronchial epithelial cells by inhibiting the activation of the mitochondrial Ca2+ uniporter (MCU), mitochondrial depolarisation and reactive oxygen species (ROS) production. Methods: The bronchial epithelial cell line 16HBE14o- was heat treated, and cell apoptosis was induced in vitro and in vivo. AS-IV was inorganically administered to Wistar rats twice a day after thermal inhalation injury, and 16HBE140- cells were treated with AS-IV after incubation at 47°C for 5 min. Protein expression was determined using Western blotting and commercial kits, apoptosis with TUNEL staining, mitochondrial channel activity by patch clamp, reactive oxygen species by MitoSOXTM fluorescence, ATP levels and enzyme activities by commercial kits as well as mitochondrial respiration and calcium by fluorescence. Results: AS-IV markedly inhibited heat-induced apoptosis, as indicated by the increased expression of the pro-apoptotic genes Bak, Bik and Bmf and increased expression of the apoptosis markers Bax, cleaved parp, cleaved caspase3 and cytochrome C. We found that MCU activation promoted mitochondrial Ca2+ overload, ATP depletion, mitochondrial ROS production and cytochrome c release and rapidly induced apoptosis. However, AS-IV treatment reduced excessive MCU activation and led to resistance against mitochondrial Ca2+ overload and excessive cytochrome C release; these effects were blocked by the MCU activator spermine. AS-IV treatment elevated ATP production and decreased ROS activity. Conclusions: MCU plays crucial roles in heat-induced mitochondrial apoptosis in 16HBE140- cells, suggesting a potential target for AS-IV treatment.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.