Background/Aims: The steroidal aromatase inactivator exemestane blocks estrogen biosynthesis and is thus employed for the prevention and treatment of breast cancer. Exemestane is in part effective by stimulation of suicidal cell death or apoptosis. Side effects of exemestane treatment include anemia. At least in theory, exemestane induced anemia could be secondary to stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, several kinases and caspases. The present study explored, whether exemestane is able to trigger eryptosis and, if so, to shed some light on the signaling involved. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCF fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to exemestane (≥ 10 µg/ml) significantly increased the percentage of annexin-V-binding cells without significantly modifying forward scatter. Exemestane significantly increased Fluo3-fluorescence (10 and 20, but not 40 µg/ml), DCF fluorescence (40 µg/ml), and ceramide abundance (40 µg/ml). The effect of exemestane (40 µg/ml) on annexin-V-binding was significantly blunted by antioxidant N-acetylcysteine (1mM), but was not significantly modified by removal or increase of extracellular Ca2+, by p38 kinase inhibitor SB203580 (2 µM), casein kinase inhibitor D4476 (10 µM) and caspase inhibitor zVAD (10 µM). Conclusions: Exemestane triggers phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by enhanced [Ca2+]i, oxidative stress, and increased ceramide abundance.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.