Background/Aims: The A3 adenosine receptor antagonist reversine (2-(4-morpholinoanilino)-6-cyclohexylaminopurine) influences cellular differentiation, inhibits cell proliferation, induces cell-cycle arrest, triggers apoptosis, causes cell swelling with polyploidy and stimulates autophagy. The effect on apoptosis involves mitochondria and caspases. Erythrocytes are lacking mitochondria but express caspases and are, similar to apoptosis of nucleated cells, able to enter suicidal erythrocyte death or eryptosis. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), energy depletion and oxidative stress. The present study explored, whether reversine influences eryptosis. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding and cell volume from forward scatter. Measurements were made without or with energy depletion (glucose deprivation for 48 hours), Ca2+ loading (30 minutes treatment with 1 µM Ca2+ ionophore ionomycin), or oxidative stress (15 min exposure to 0.3 mM tert-butylhydroperoxide). Results: A 48 hours exposure of human erythrocytes to reversine (1-10 µM) did not significantly modify the percentage of annexin-V-binding cells and forward scatter. Energy depletion, Ca2+ loading, and oxidative stress were each followed by profound and significant increase of the percentage annexin-V-binding erythrocytes and a significant decrease of forward scatter. The effects of each, Ca2+ loading, energy depletion and oxidative stress on annexin-V-binding were significantly blunted in the presence of reversine (1-10 µM). The effect of ionomycin, but not the effects of energy depletion and oxidative stress on forward scatter were again significantly blunted in the presence of reversine (≥1 µM]. Conclusions: Reversine is a powerful inhibitor of cell membrane scrambling following energy depletion, Ca2+ loading and oxidative stress.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.