Background/Aims: Exposure to arsenic in individuals has been found to be associated with various health-related problems including skin lesions, cancer, and cardiovascular and immunological disorders. (-)-Epigallocatechin-3-gallate (EGCG), the main and active polyphenolic catechin present in green tea, has shown potent antioxidant, anti-apoptotic and anti-inflammatory activity in vivo and in vitro. Thus, the present study was conducted to investigate the protective effects of EGCG against arsenic-induced inflammation and immunotoxicity in mice. Methods: Serum IL-1β, IL-6 and TNF-α were determined by ELISA, tissue catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), nitric oxide and caspase 3 by commercial kits, mitochondrial membrane potential with Rh 123, mitochondrial ROS with 2’,7’-dichlorofluorescin diacetate (DCFH-DA), apoptotic and necrotic cells and T-cell phenotyping with Flow cytometry analysis. Results: The results showed that arsenic treatment significantly increased oxidative stress levels (as indicated by catalase, malonyldialdehyde, superoxide dismutase, glutathione and reactive oxygen species), increased levels of inflammatory cytokines and promoted apoptosis. Arsenic exposure increased the relative frequency of the CD8+(Tc) cell subpopulation (from 2.8 to 18.9%) and decreased the frequency of CD4+(Th) cells (from 5.2 to 2.7%). Arsenic exposure also significantly decreased the frequency of T(CD3) (from 32.5% to 19.2%) and B(CD19) cells (from 55.1 to 32.5%). All of these effects induced by NaAsO2 were attenuated by EGCG. Conclusions: The present in vitro findings indicate that EGCG attenuates not only NaAsO2-induced immunosuppression but also inflammation and apoptosis.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.