Background/Aims: Neuroinflammatory processes have been implicated in the pathophysiology of seizure/epilepsy. High mobility group box 1 (HMGB1), a non-histone DNA binding protein, behaves like an inflammatory cytokine in response to epileptogenic insults. Kainic acid (KA) is an excitotoxic reagent commonly used to induce epilepsy in rodents. However, the molecular mechanism by which KA-induced HMGB1 affords the initiation of epilepsy, especially the role of extracellular HMGB1 in neurotransmitter expression, remains to be elucidated. Methods: Experimental early stage of epilepsy-related hyperexcitability was induced in primary rat neural cells (PRNCs) by KA administration. We measured the localization of HMGB1, cell viability, mitochondrial activity, and expression level of glutamate metabolism-associated enzymes. Results: KA induced the translocation of HMGB1 from nucleus to cytosol, and its release from the neural cells. The translocation is associated with post-translational modifications. An increase in extracellular HMGB1 decreased PRNC cell viability and mitochondrial activity, downregulated expression of glutamate decarboxylase67 (GAD67) and glutamate dehydrogenase (GLUD1/2), and increased intracellular glutamate concentration and major histocompatibility complex II (MHC II) level. Conclusions: That a surge in extracellular HMGB1 approximated seizure initiation suggests a key pathophysiological contribution of HMGB1 to the onset of epilepsy-related hyperexcitability.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.