Background: Emodin has anti-neoplastic activities on multiple tumors. However, the molecular mechanisms underlying this effect still remain to be fully understood. Methods: Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays and flow cytometry, respectively. Cell invasion and migration were examined by transwell invasion and wound healing assays. Western blot analysis was performed to examine the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα), extracellular signaling-regulated kinase 1/2 (ERK1/2), peroxisome proliferators-activated receptor gamma (PPARγ), insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and the transcription factor Sp1. QRT-PCR was used to examine the mRNA levels of the IGFBP1 gene. Small interfering RNAs (siRNAs) were used to knockdown PPARγ and IGFBP1 genes. Exogenously expression of IGFBP1 and Sp1 was determined by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings. Results: We showed that emodin induced cell cycle arrest of NSCLC cells. Emodin increased PPARγ protein and luciferase reporter activity, which were abolished by inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK and AMPK. Silencing of PPARγ abrogated emodin-inhibited cell growth and cell cycle arrest. Furthermore, emodin elevated IGFBP1 mRNA, protein, and promoter activity through activation of PPARγ. Intriguingly, overexpressed Sp1 attenuated emodin-induced IGFBP1 expression, which was not observed in cells with silenced PPARγ gene. Moreover, silencing of IGFBP1 gene blunted emodin-induced inhibition of cell growth and cell cycle arrest. On the contrary, overexpressed IGFBP1 enhanced emodin-induced phosphorylation of AMPKα and ERK1/2, and restored emodin-inhibited growth in cells with silenced endogenous IGFBP1 gene. Emodin also inhibited growth of lung xenograft tumors and Sp1, and increased IGFBP1 and PPARγ protein expressions In vivo. Conclusion: Collectively, our results show that emodin inhibits growth of non-small-cell lung cancer (NSCLC) cells through ERK and AMPKα-mediated induction of PPARγ, followed by reduction of Sp1. This in turn induces IGFBP1 gene expression. Thus, the signaling cascades, positive feedback loop and cooperative interplay between transcription factors-induced the expression of IGFBP1 gene contribute to the overall responses of emodin. This study provides a novel mechanism by which emodin inhibits growth of human lung cancer cells.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.