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Abstract
Background: Cadmium (Cd), a common environmental heavy metal and endocrine disruptor, 
is known to exert toxic effects on the testes. However, the mechanisms accounting for its 
toxicity in mature spermatozoa remain unclear. Methods: Adult male C57BL/6 mice were orally 
administered with CdCl2 for 5 weeks at 3 mg·kg−1·day−1. Additionally, mouse spermatozoa were 
incubated in vitro with different doses of CdCl2 (0, 10, 50, 250 µM). Several sperm functions 
including the sperm motility, viability and acrosome reaction (AR) ratio were then examined. 
Furthermore, the current and expression levels of both the sperm-specific Ca2+ channel 
(CatSper) and the sperm-specific K+ channel (KSper) were evaluated by patch-clamping and 
western blotting, respectively. Results: Our data showed that the motility, viability and AR of 
sperm exposed to cadmium significantly decreased in vivo and in vitro. Interestingly, these 
changes were correlated with changes in CatSper but not KSper. Conclusion: The findings 
indicate sperm dysfunction during both chronic and acute cadmium exposure as well as a 
specific role for CatSper in the reproductive toxicity of cadmium.

Introduction

Recently, the reproductive toxicity caused by heavy metal contamination has been a 
matter of increasing concern. Cadmium, which is one of the most common environmental 
and occupational metallic toxicants, has also been demonstrated to potentially threaten 
human health [1-3]. Due to its high toxicity and cumulative effect, Cd easily leads to multi-
organ injury, especially to the genital system [4-6]. Compared with other organs, the testes, 
which are the male gonads, are more vulnerable to toxicants because of their active cell 
division and metabolism [7-11]. A recent report used the measurement of semen quality 
as a marker of environmental pollution due to cadmium [12]. However, previous studies on 
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cadmium-induced toxicity in the male reproductive system focused more on the interference 
with spermatogenesis [13], damage to nuclear DNA [14], and causes of apoptosis [15], while 
the toxicity and mechanisms of cadmium in mature spermatozoa are still unclear. 

Produced initially in the testes, sperm are quiescent in the male reproductive tract and 
then mature in the epididymis. During ejaculation, sperm must undergo a series of challenges 
to acquire fertilization competence prior to fusing with the oocyte [16-18]. Because of 
transcriptional gene silencing in sperm, these physiological processes for fertilization are 
generally triggered by the activation of ion channels on the sperm membrane [17-20]. With 
the establishment of the sperm patch clamp [21], the functional and molecular characteristics 
of ion channels in mature sperm could then be directly studied by electrophysiological 
methods. Among these channels, the sperm-specific Ca2+ channel (CatSper) and K+ channel 
(KSper) are essential for male fertility in mammals [21-24]. 

It has been previously proposed that the sperm-specific cation channel (CatSper) acts as 
the main intracellular Ca2+ source and may cause several Ca2+-dependent responses (motility, 
chemotaxis, and the acrosome reaction) [22, 25-29], whereas the sperm-specific potassium 
channel (Slo3) accounts for hyperpolarization of the membrane potential [24, 30]. Further 
studies have also revealed that both CatSper and KSper are indispensable to male fertility 
and that any mutation of either channel will cause male infertility [30, 31]. 

Many studies in multiple cell systems showed that one of the toxicity mechanisms by 
which heavy metals disrupt cellular function depends on their similarities in charge or size to 
ions, thus competing with the related ions or hindering their normal membrane permeation. 
In this study, we aimed to evaluate changes in sperm function after exposure to cadmium 
and explore related mechanisms in vivo by orally administering cadmium chloride (CdCl2) 
according to ref [31] and in vitro by applying 10, 50, and 250 μM CdCl2 to sperm. Several 
sperm functions such as viability, motility, and acrosome reaction (AR) were examined. 
Furthermore, both CatSper and KSper currents were tested by patch-clamping, and their 
gene or protein expression levels were observed simultaneously. Taken together, the results 
might help to illuminate a novel mechanism underlying the effects of heavy metals on the 
regulation of reproductive function.

Materials and Methods

Experimental animals
Male C57BL/6 mice (25-35 g; 7-9 weeks) were purchased from the Animal Center of Nanchang 

University. The mice were housed at a temperature of 20~25°C under a 12/12 h light/dark schedule and 
then sacrificed after receiving oral CdCl2 (Sigma, USA) at 3 mg·kg−1·day−1 for 5 weeks. All animals were treated 
humanely, and this study was approved by the Animal Care and Use Committee of Nanchang University.  

After sacrifice on day 36, the testes were separated, and the spermatozoa were released from the 
epididymis into HS solution (135 mM NaCl, 5 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 20 mM HEPES, 5 mM 
glucose, 10 mM lactic acid, and 1 mM Na-pyruvate at pH 7.4 with NaOH) or human tubal fluid (HTF) 
(Millipore, USA) capacitation medium. The sperm concentration was calculated and recorded for the 
subsequent experiments.

Serum cadmium analysis 
Blood collected from the angular artery was centrifuged at 2500 rpm for 10 min, and the serum was 

collected and frozen at -80°C for later analysis. The Cd concentrations in the mouse blood were analyzed 
by atomic absorption spectrophotometry (AAS) and were calculated using the following formula: Cd (μg/g) 
=Cx×nW (W: weight of sample, n: dilution, Cx: value from standard curve). 

Testes histological examination
The testes were fixed in 4% paraformaldehyde for at least 24 h and then dehydrated in graded ethanol 

to make paraffin blocks. A 5-μm tissue section cut with a Leica microtome was stained using a routine 
hematoxylin/eosin staining technique and then examined using a Leica DM2500 Upright Microscope.    

D
ow

nloaded from
 http://karger.com

/cpb/article-pdf/42/1/44/2441186/000477113.pdf by guest on 23 April 2024

http://dx.doi.org/10.1159%2F000477113


Cell Physiol Biochem 2017;42:44-54
DOI: 10.1159/000477113
Published online: May 11, 2017 46
Wang et al.: Cadmium Impairs Mouse Sperm Functions

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2017 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Computer-assisted sperm analysis (CASA) 
The total sperm motility (%) before and after CdCl2 addition was analyzed using a CASA system (WLJY-

9000, China), as previously described [31]. For the in vitro study, sperm were incubated with different CdCl2 
concentrations (0, 10, 50, 250 μM) for 60 min at 37°C in 5% CO2. Afterwards, a 10-µL sperm suspension 
was placed in a preheated (37°C) observation chamber, and the motility was then evaluated, including the 
PR (progressive ratio) and NP (non-progressive ratio). Sperm viability was assessed via eosin-nigrosin 
staining. The dead sperm would appear pink, while the live sperm would not be stained. A minimum of 200 
spermatozoa were counted for each assay.

Acrosome reaction (AR) assessment 
The acrosome reaction was assessed by chlortetracycline (CTC) (Sigma, USA) staining 

as previously reported [31, 32]. Epididymal sperm were released and capacitated in HTF 
medium for 60 min in the presence or absence of CdCl2 and progesterone (10 µM). After low-
speed centrifugation for 10 min, the resulting sperm precipitate was resuspended in 100  
L of HTF and equivalent CTC solution for 20 min at 37°C in 5% CO2. The stained sperm were then collected, 
fixed and examined by using a Leica DM2500 Upright Microscope under epifluorescent illumination with 
ultraviolet BP340-380 (Leica “A” filter, Germany). Three different sperm patterns were observed: the F 
pattern (yellow fluorescence distributed uniformly over the head), which meant non-capacitated sperm; 
the B pattern (yellow fluorescence over the acrosomal region but a dark post-acrosomal region), which 
meant non-capacitated sperm; and the AR pattern (a very weak or no fluorescence over the head), which 
was taken to be indicative of acrosome-reacted sperm. At least 200 spermatozoa were counted to assess 
the CTC staining status. 

Sperm patch-clamp recordings
Whole-cell currents were recorded by patch-clamping the sperm cytoplasmic droplet as reported 

previously [24]. Epididymal sperm were obtained and suspended in dissociation solution (HS). For 
recording of the CatSper current, a sodium-based divalent-free (DVF) solution containing 150 mM NaCl, 
20 mM HEPES, and 5 mM EDTA at pH 7.4 was used, while the pipette solution contained 135 mM Cs-MES, 
10 mM HEPES, 10 mM EGTA, and 5 mM CsCl adjusted to a pH 7.2 with CsOH. For KSper, an extracellular 
solution containing 160 mM KOH, 10 mM HEPES and 150 mM MES (pH was adjusted to 7.4 with MES). The 
symmetrical 160 mM K+ pipette solution contained 155 mM KOH, 5 mM KCl, 10 mM 1,2-bis(2-aminophenoxy) 
ethane-N,N,N’,N’-tetraacetic acid (BAPTA), 20 mM HEPES, and 115 mM MES (pH was adjusted to 8.0 with 
KOH). The different doses of CdCl2 were prepared in the extracellular solution. All currents were analyzed 
with Clampfit (Axon, Gilze, Netherlands) and Grapher 8 software (Golden Software, Inc., Golden, CO, USA).

Real-time PCR analysis
To assess mRNA expression of target genes in mice with or without cadmium exposure, real-time 

quantitative reverse transcriptase PCR (qRT-PCR) was conducted according to a previously described 
method [31]. The total RNA was extracted from mouse testes using Trizol reagent (Ambion, USA) and was 
treated with the DNA-free Kit (Takara; USA) to remove genomic DNA. cDNA was synthesized from the total 
RNA with a RT-PCR kit (Takara, USA) according to the manufacturer's in structions. The mRNA expression 
was assessed in a StepOnePlus RT-PCR system (Applied Biosystems, USA) with specific primers. The primer 
sequenc es for CatSper1-4, Slo3 and β-actin were designed according to previous pub lications [31]. The 2-ΔΔCt 
method was utilized to evaluate the relative expression normali zed to β-actin expression. The results were 
averaged from four sets of independent experiments.

Western blot
To detect the protein expression of CatSper and Slo3 in chronic cadmium-treated mice, the extracted 

testes proteins were mixed with SDS Loading Buffer. Protein samples were electrophoresed on 10% SDS-
polyacrylamide gels and were transferred onto polyvinylidene difluoride membranes (GE Healthcare, USA). 
Five percent skim milk powder was used to block nonspecific binding sites for 1 h. After being washed with 
TBST, the membrane was incubated with corresponding primary antibodies (Abcam, USA) at 4°C overnight. 
After incubation with HRP-conjugated goat anti-rabbit/mouse IgG (Thermo Scientific, USA) for 1 h, the 
protein level was visualized using an ECL detection kit (Thermo Scientific, USA). 
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Statistical analysis
The results are presented as the mean±SEM. One-way analysis of variance (ANOVA) followed by 

Student’s t-test was used to determine significant differences indicative of changes between the control 
and the treated groups with GraphPad Prism 6. The results were considered statistically significant when 
p<0.05. 

Results

Chronic cadmium exposure could harm the motility, viability and AR of mouse sperm
To observe the reproductive toxicity of Cd in mature sperm, a chronic cadmium poisoning 

model was built by orally dosing the mice with CdCl2 at 3 mg·kg−1·day−1 for 5 weeks. Whether 
the model was built successfully was initially identified through the measurement of Cd 
concentration in blood as well as the change in the index of testis (the ratio of testis weight 
to body weight) (as is shown in Table 1 and 2) and the testicular histology (Fig. 2). After 
epididymal sperm collection, three essential parameters, including motility, progressive 
motility and viability, were examined by CASA and were found to be significantly decreased 
(P<0.05) in Cd-treated mice (Fig. 1A, B and C). 

In mammals, the acrosome reaction is crucial for sperm to fuse with the oocyte [25]. 
Here, both spontaneous and progesterone-induced ARs were examined in cadmium-treated 
mice. Compared with the control group, the spontaneous AR declined significantly (Fig. 
1D). Although the progesterone-induced AR also decreased in cadmium-treated mice, the 
percentage of decrease is similar to that of the spontaneous AR (8.9% vs 9.8%). It seemed that 
only the spontaneous AR was affected by cadmium in vivo. Collectively, these results show 
that testicular tissue, sperm motility, and spontaneous AR were all impaired after cadmium 
exposure, which indicated enormous damage by cadmium to the functions of mature sperm.

Fig. 1. 5 weeks of cadmium ad-
ministration impaired sperm 
motility and acrosome reacti-
on significantly. Cadmium ad-
ministration inhibited sperm 
total motility (A), progressive 
motility (B) and viability (C). 
Both the spontaneous AR and 
progesterone (P4) induced AR 
(D) were impaired after cad-
mium administration. Bars in-
dicate the mean ± SEM; n = 5 
for each panel. *p < 0.05, **p < 
0.01, and ***p < 0.001. 

Table 1. Cadmium accumulation in mice blood after 
cadmium exposure

Table 2. Effects of cadmium exposure on mouse tes-
tis index
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CatSper current was reduced in cadmium-treated mice, while KSper was uninfluenced
The CatSper channel, which is specifically located on the mammalian sperm flagellum, 

mediates a series of sperm functions [22, 26, 27, 33]. In view of the channel’s vital role, we 
tried to further observe whether cadmium treatment caused functional impairment via the 
CatSper abnormality. As shown in Fig. 3A and B, the CatSper current was elicited by a ramp 
protocol from -100 mV to +100 mV and declined by 24.4% at +100 mV in cadmium-treated 
mice compared with the control group (P<0.001). Furthermore, another pH-sensitive 
channel of sperm, KSper, mediates the membrane potential of sperm and is also thought to 
be involved in sperm motility and the AR. To investigate whether cadmium affected KSper 
specifically, we next recorded the KSper current, which was elicited by using the same 
protocol. No significant difference was observed between the cadmium-treated mice and 
the control group (Fig. 3C and D). Accordingly, the impaired sperm functions caused by 
cadmium exposure may result from the lower CatSper current.

The expression levels of CatSper subunits were also reduced variously
The CatSper current decreased in the cadmium-treated mice, as shown above, which 

suggested that the expression level of CatSper subunits might be influenced by cadmium. 
Previous studies proposed that the CatSper channel was composed of four different pore-
forming subunits (CatSper1-4) [22, 34], and any mutation of these subunits would abolish 
the CatSper current [33]. Therefore, it is necessary to clarify whether the decrease of 

Fig. 2. HE staining results of 
testis with or without cadmi-
um exposure. A. Control mouse 
testis; B. Cadmium-treated 
mouse testis. (100X).

Fig. 3. CatSper (sperm-speci-
fic Ca2+ current) but not KSper 
(sperm-specific K+ current) 
were reduced in sperm from 
cadmium-treated mice. (A) 
CatSper currents recorded by 
a ramp protocol from mice tre-
ated with CdCl2. (B) Averaged 
CatSper amplitudes measured 
at both -100 mV and + 100 
mV from each sperm group. 
(C) Ramp KSper currents re-
corded from each group. (D) 
Averaged KSper amplitudes 
for each group. Bars indicate 
the mean ± SEM; the numbers 
of cells tested are shown in the 
figure. *p < 0.05, **p < 0.01, 
and ***p < 0.001.
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the CatSper current in the cadmium-treated mice results from gene expression changes 
of these pore-forming subunits. As shown in Fig. 4, both the mRNA and protein levels of 
the CatSper subunits exhibited diverse modification. CatSper1, CatSper3, and especially 
CatSper4 were downregulated dramatically after cadmium exposure. However, CatSper2 
showed no obvious difference. In contrast, the mRNA level of Slo3, the pore-forming subunit 
of the KSper channel, decreased slightly (Fig. 4A), whereas the protein level did not show a 
significant decrease (Fig. 4B and C), which corresponded to the KSper current (Fig. 3C and 
D). This discrepancy may result from a post-translational modification conferring resistance 
to cadmium stress. Overall, these results imply that the decreased expression of CatSper 
resulted in the decrease of the CatSper current.

Cadmium inhibited mouse sperm viability, motility and AR in vitro
After ejaculation, spermatozoa can be maintained for days under the conditions of 

the female reproductive tract. Spermatozoa must overcome several barriers to fuse with 
the oocyte and are potentially faced with cadmium exposure. Therefore, it is necessary to 
determine whether cadmium may interfere with sperm functions in vitro. Spermatozoa 
were incubated with four different cadmium concentrations (0, 10, 50, and 250 μM) for 60 
min and were then subjected to motility analysis. The results showed that sperm viability 
decreased only at 250 μM (Fig. 5A), while sperm motility declined significantly at 50 and 
250 μM (Fig. 5B). After the sperm had been capacitated for 60 min, both spontaneous and 
progesterone-induced ARs were assessed with cadmium exposure in vitro. Cadmium had no 
influence on the spontaneous AR (Fig. 5C), whereas it suppressed the progesterone-induced 
AR significantly at 250 μM (Fig. 5D). From the above results, we speculate that cadmium 
could have an impact on the fertilization ability of spermatozoa with changes in viability, 
motility and the progesterone-induced AR.

Cadmium inhibited CatSper current but had no effect on KSper current in vitro
Our results above suggest that cadmium may impair sperm functions in vivo by affecting 

CatSper expression, resulting in a current decrease. To clarify whether cadmium inhibited 
sperm functions in vitro due to a targeted effect on the CatSper channel, we tested the effect 
of cadmium on the CatSper channel by whole-sperm patch. Sperm were perfused with a 
DVF solution containing different concentrations of cadmium chloride (0, 10, 50, and 250 
μM). The results demonstrated that direct cadmium application could inhibit the CatSper 
current transiently but dose-dependently (Fig. 6A and B). In contrast, cadmium had no effect 
on mouse KSper current even at 250 μM (Fig6C and D). Overall, these results imply that the 
inhibitory effect of cadmium on mouse sperm functions may result from the reduction of the 
CatSper current in vitro. 

Fig. 4. The mRNA and protein expression levels of CatSper subunits decreased in cadmium-treated mice. 
(A) The mRNA levels of CatSper1-4 and Slo3 subunits in cadmium treated mice. (B) The protein levels of 
CatSper1-4 in cadmium-treated mice. (C) Statistical results for protein levels. Bars indicate the mean ± SEM; 
n = 3; *p < 0.05, **p < 0.01, and ***p < 0.001.
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Discussion

Although the average daily intake of Cd is only approximately 0.35 mg/kg (ATSDR, 2012) 
for an adult male, the easy accumulation and long biological half-life (20-30 years in humans) 
of Cd [35] can injure individuals' liver, kidneys and reproductive system [36]. For the male 
reproductive system, Cd is enriched not only in the testes but also in the epididymis, where 
sperm become mature. Using a chronically Cd-poisoned mouse model [37] and an acute Cd 
exposure method, we tried to observe how chronic and acute cadmium exposure can affect 
the physiologic functions of mature sperm and explored the underlying mechanisms. 

In this study, the method of administering cadmium to the mice and the dose of 
cadmium used were critical. Although there have been many methods to generate a 
chronically Cd-exposed animal model [37], it was still necessary to consider how to make 
the dose of cadmium, route of intake and pathological process of the experimental animal 
model similar to those of human beings in daily life. Additionally, it is important to note that 

Fig. 5. Cadmium impaired the 
functions of mature sperm 
in vitro. The collected sperm 
were incubated in HS solution 
with various doses of cadmi-
um (0, 10, 50, 250 µM) for 1h. 
Cadmium affected both sperm 
viability (A) and motility (B) 
with a dose-dependent man-
ner. Meanwhile, cadmium 

suppressed the spontaneous 
AR (C) and P4 induced AR (D). 
Bars indicate the mean ± SEM; 
n = 4; *p < 0.05, **p < 0.01, and 
***p < 0.001.

Fig. 6. Cadmium inhibited 
the sperm specific CatSper 
current while had no effect 
on KSper current. (A) CatSper 
current recorded at cons-
tantly +100 mV exhibited a 
transient inhibition by cadmi-
um. (B) Normalized current 
measured at max inhibition 
showed a concentration-de-
pendent manner. (C) Cadmi-
um had no effect on KSper 
current in a certain extent. 
(D) Statistical results for (C). 
Bars indicate the mean ± SEM. 
n = 4; *p < 0.05, **p < 0.01, and 
***p < 0.001.
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the cadmium concentration in the testes of chronically Cd-poisoned animals was four times 
higher than that of high-dose injected animals, which is physiologically relevant to humans 
[38]. Therefore, we chose a dietary (drinking) cadmium intake method to create a chronic, 
oral, low-dose Cd-poisoned animal model [37]. According to normal individuals' permissible 
daily Cd2+ intake and the oral LD50 of Cd for mice, we chose an appropriate Cd dosage (3 
mg·kg−1·day−1). In addition, low concentrations of CdCl2 would be used for sperm incubation 
in vitro, including 10, 50, and 250 µM. 

In our study, the results from both in vivo and in vitro experiments, which represent 
chronic Cd exposure in the male accessory gonads and short-term Cd exposure in the female 
reproductive tract, indicated that physiologic functions including the motility, progressive 
motility and AR of Cd-poisoned sperm decreased significantly, thus negatively affecting male 
fertility. The reason why sperm dysfunction was induced by Cd may lie in the intracellular 
calcium concentration, which is the key factor in regulating those essential processes of 
sperm. 

Due to the special structure of sperm (scant cytoplasm and underdeveloped calcium 
storage), the influx of calcium becomes the dominant pathway for the increase of intracellular 
calcium [39, 40]. Therefore, the sensitivity and permeability of calcium channels in the sperm 
membrane appears especially notable [41-43]. However, there has been little research in 
relation to the pathogenic mechanism of Cd, limited by the difficulty of recording the sperm 
membrane current, which reflects the channel activity. Here, we agree with Zhou’s opinion 
that cadmium was likely to affect sperm motility through the level of calcium entry, altered 
by calcium channel properties [44-47]. However, we believe CatSper, which is located in the 
principal piece of the sperm flagellum, was the foremost binding site of cadmium, causing 
toxicity.

CatSper, like other voltage-gated calcium channels, possesses a conserved calcium-
selective pore composed of four subunits (CatSper1-4) and three auxiliary subunits [48], 
and the channel seems to be exclusively evolved for sperm function and male fertility [22]. 
Owing to its sperm specificity, significant effect and high efficiency, CatSper has become a 
crucial target for research and treatment of male infertility as well as developing novel male 
contraceptives [40, 49].  

In our opinion, the mechanism for Cd-induced damage of sperm functions has the 
following aspects. First, Cd can directly affect the expression and activity of CatSper. Here, 
low gene transcription and protein expression of CatSper (1, 3, 4) were observed, while 
the CatSper current recorded by the sperm whole-cell patch clamp markedly decreased, 
exhibiting an obviously dose-dependent toxic effect of Cd in vitro. Second, CatSper's 
permeability to Ca2+ would be disrupted by Cd exposure. A CatSper-like pore was recently 
generated and presented less sensitivity but stronger permeability to Cd2+ compared with 
other voltage-dependent calcium channels [40, 44, 50]. Furthermore, CatSper's permeability 
to Cd2+ in human spermatozoa was shown to be significantly increased by progesterone [51-
53], an essential physiological regulator in the microenvironment of the female reproductive 
tract, thus implying that excessive Cd2+ influx through CatSper could affect sperm function. 
Third, Cd2+, also known as one of the environmental endocrine-disrupting chemicals (EDCs), 
may affect the current of CatSper, since CatSper seems to be a polymodal, chemosensory 
calcium channel stimulated by a diverse range of chemicals such as the plasticizer bisphenol 
A (BPA) and 4-methylbenzylidene camphor (4-MBC) [31, 54, 55]. Finally, Cd poisoning 
probably damaged renal function [56, 57], leading to a decrease in blood pH and thereby 
inhibiting the activity of sperm CatSper.

Membrane potential hyperpolarization is a prerequisite for sperm capacitation, 
hyperactivation and other physiologic processes [58]. Furthermore, under physiological 
conditions, the main voltage-gated potassium channel that determined the membrane 
potential of sperm was Slo3 [24, 30]. In this study, the effect of Cd on Slo3 was also evaluated, 
and it was found that Cd could inhibit the expression of Slo3 mRNA. However, unlike CatSper, 
the protein level of Slo3 and the amplitude of the KSper current did not significantly differ 
from those in the control group.
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Infertility has become a serious global public health problem. With the rapid 
development of modern industries, the reproductive impairment caused by environmental 
pollution should never be neglected. For the first time, we investigated the effect of heavy 
metal exposure on the activity of CatSper and KSper, which are crucial channels for the 
regulation of the physiologic function of mature sperm, to further illuminate the toxicological 
mechanism of heavy metal on male reproduction that might contribute to the decline in 
human fertility and to bring new ideas for therapeutic approaches. The specific signaling 
network remains to be further studied and explored. 
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