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Abstract
Background/Aims: The purpose of this study was to explore the in vitro putative genotoxicity 
during exposure of Neuro-2a cells to radiofrequency electromagnetic fields (RF-EMFs) with or 
without silencing of 8-oxoG DNA glycosylase-1 (OGG1). Methods: Neuro-2a cells treated with 
or without OGG1 siRNA were exposed to 900 MHz Global System for Mobile Communication 
(GSM) Talk signals continuously at a specific absorption rate (SAR) of 0, 0.5, 1 or 2 W/kg for 
24 h. DNA strand breakage and DNA base damage were measured by the alkaline comet 
assay and a modified comet assay using formamidopyrimidine DNA glycosylase (FPG), 
respectively. Reactive oxygen species (ROS) levels and cell viability were monitored using 
the non-fluorescent probe 2, 7-dichlorofluorescein diacetate (DCFH-DA) and CCK-8 assay. 
Results: Exposure to 900 MHz RF-EMFs with insufficient energy could induce oxidative DNA 
base damage in Neuro-2a cells. These increases were concomitant with similar increases in the 
generation of reactive oxygen species (ROS). Without OGG1 siRNA, 2 W/kg RF-EMFs induced 
oxidative DNA base damage in Neuro-2a cells. Interestingly, with OGG1 siRNA, RF-EMFs could 
cause DNA base damage in Neuro-2a cells as low as 1 W/kg. However, neither DNA strand 
breakage nor altered cell viability was observed. Conclusion: Even if further studies remain 
conducted we support the hypothesis that OGG1 is involved in the process of DNA base repair 
and may play a pivotal role in protecting DNA bases from RF-EMF induced oxidative damage.
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Introduction

Over the past several decades, there has been a substantial increase in mobile phone use 
and an expansion of the number of signal base stations located near our living areas. Thus, 
exposure to radiofrequency electromagnetic fields (RF-EMFs) emitted from these devices has 
significantly increased, provoking growing concern and debate concerning the hazardous 
health effects of RF-EMFs exposure. The central nervous system (CNS) is considered to be 
one of the primary targets of this radiation, especially with regard to carcinogenicity based 
on a series of accumulated data. A study [1] found that mobile phone users had an increased 
risk of malignant glioma and a higher rate of acoustic neuroma. Meta-analyses and adequate 
epidemiologic evidence suggest that there may be a causal relationship between mobile 
phone use and the incidence of brain tumors especially the ipsilateral brain tumor [2, 3]. In 
2011, RF-EMFs have been classified as possibly carcinogenic to humans (Group 2B) by the 
International Agency for Research on Cancer (IARC) [4]. Recent reports about brain tumor 
induction among mobile phone users, especially among those who have used mobile phones 
daily for more than 10 years appear to agree with the notion that DNA damage in somatic 
cells may result in cancer induction [1, 3, 5]. However, numerous controversies remain 
concerning the potential of RF-EMFs to damage neural cell DNA.

Recently, numerous investigations of the effects of RF-EMFs radiation on the integrity of 
somatic cell genomic DNA have emerged. Previous studies observed significant increases in 
dicentric chromosomes (among smoker-alcoholic mobile users), sister chromatid exchanges 
(synergistic action with mitomycin C) [6], micro-nucleation and DNA strand breaks [7] in 
blood lymphocytes obtained from mobile phone users. A significant increase in erythrocyte 
micronuclei frequency was observed in newborn pups of mother rats maintained under 834 
MHz EMF exposure at a SAR of 1.23 W/kg for 8.5 h per day throughout the gestation period 
[8]. Some studies [9, 10] observed a significantly high frequency of chromosomal aberrations 
such as dicentric and ring chromosomes and an increase in the frequency of micronuclei 
in EMF-exposed V79 Chinese hamster cells and human blood lymphocytes. Regarding DNA 
fragmentation, continuously exposed rat brain cells to microwave radiation of 2450 MHz at 
SARs of 0.6 W/kg (2 h) [11], and 1.2 W/kg (2 h) [12-14], they found a significant increase 
in DNA double- and single-strand breaks in the exposed groups. Human lens epithelial cells 
exposed to RF-EMFs for 2 h or 24 h exhibited single-strand breaks and double-strand breaks 
[15, 16], respectively, at a SAR of 3 W/kg or 4 W/kg. A recent study observed a significant 
increase in DNA single-strand breaks in cells of hair roots located around the human ear 
following exposure to RF-EMFs at frequency of 900 MHz [17]. However, these findings have 
not been supported by other studies [18-21]. No DNA strand breaks were detected in human 
blood cells after exposure to a 935 MHz basic signal at 1 or 2 W/kg for 2 h [22] or after long-
term exposure to a 900 MHz Global System for Mobile Communication (GSM) signal (2 h/
day, 5 days/week for 2 years) [23]. Therefore, unlike the certainty of injury effect of ionizing 
radiation on DNA [24], the genotoxicity of RF-EMFs exposure remains controversial, with 
conflicting evidence obtained under different experimental conditions.

Increasing evidence has demonstrated that exposure to RF-EMFs radiation may induce 
oxidative stress [25], followed by cellular oxidative damage, i.e., oxidative DNA damage [26, 
27]. Oxidative stress is a condition induced by oxygen and oxygen-derived free radicals. 
Free radicals are commonly known as reactive oxygen species (ROS) [28], which attack DNA 
base and thus lead to the formation of oxidized bases, abasic (apurinic/apyrimidinic) sites, 
strand breaks, and DNA-protein cross-links [29]. Our previous study [30] suggested that 
RF-EMFs exert genotoxic effects via oxidative DNA base damage, which is mediated by ROS 
production, in male germ cells. Among the oxidation sites of DNA, DNA bases are regarded 
as extremely sensitive to ROS oxidation, especially guanine due to its low redox potential 
[31]. 8-oxoguanine (8-oxoG) is known to be significantly accumulated when the major DNA 
base guanine undergoes oxidation induced by oxidative stress in vitro [30] and in vivo [32]. 
8-oxoG DNA glycosylase-1 (OGG1) is the major protective enzyme against the mutagenic 
effects of 8-oxoG; OGG1 functions by recognizing and removing 8-oxoG from cellular DNA 
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[33]. An early study [34] suggested that OGG1 plays a pivotal role in the repair of oxidative 
damage to nuclear DNA, thereby reducing brain damage and improving cellular function. 
Furthermore, a recent study [35] demonstrated that a deficiency of the base excision repair 
(BER) enzyme OGG1 results in enhanced ischemia-reperfusion-induced damage in mouse 
hearts. Inhibiting the expression of human OGG1 (hOGG1) can delay the removal of 8-oxoG, 
which may exacerbate oxidative DNA damage caused by cadmium and may even increase 
the frequency of mutations [32]. Whether OGG1 plays an important role in the formation of 
RF-EMFs-induced oxidative DNA lesions remains unclear.

To explore the potential for oxidative DNA lesion formation due to 900 MHz RF-EMFs 
exposure and the possible role of OGG1 in RF-EMFs-induced DNA damage, the present study 
involved a 24 h continuous exposure to 900 MHz GSM Talk signals at a SAR of 0, 0.5, 1 or 2 W/
kg. The results of a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet 
assay showed significant oxidative DNA base damage due to RF-EMFs exposure at 2 W/kg 
that was exacerbated by OGG1 RNA interference. OGG1 inhibition increased the sensitivity of 
Neuro-2a cells to RF-EMFs-induced DNA base damage at 1 W/kg. These data clearly suggest 
that OGG1 plays a vital role in the protection of DNA bases from oxidative damage induced 
by RF-EMFs.

Materials and Methods

Cell culture
A mouse neuroblastoma cell line (Neuro-2a) was acquired from the American Tissue Culture 

Collection (ATCC; Rockville, MD, USA) and maintained at 37.0 ± 0.2℃ in a humidified atmosphere in the 
presence of 5% CO2. Neuro-2a cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium 
(DMEM; Hyclone, Logan, UT, USA) with 10% fetal bovine serum (FBS) (Hyclone) and 50 mg/ml penicillin-
streptomycin (Sigma-Aldrich, St. Louis, MO, USA). Cells were dislodged for subculturing every two days. In 
each experiment, 2 ml of cell mixture was seeded in 35 mm plastic Petri dishes (Corning, Tewksbury, MA, 
USA) at 2 × 105 cells/dish for 12 h before exposure to RF-EMFs.

RF-EMFs exposure system
The exposure system that we used was provided by the Foundation for Information Technologies 

in Society (IT’IS Foundation, Zurich, Switzerland). The setup contained two rectangular chambers placed 
inside the same incubator with a common location for the air inlet so as to maintain the same environmental 
conditions (37℃, 5% CO2/95% air) for the exposed and sham-exposed cells. One of the chambers was excited 
by an EMF signal mimicking the basic pulse structure of the GSM Talk signal at 900 MHz and the other was 
used for sham exposure. Cell monolayers were exposed in the H-field maximum. The larger cross-section of 
the chambers enabled the placement of 8 Petri dishes per field maximum. The Petri dishes were arranged in 
two towers, each consisting of four dishes. Tight exposure and environmental control was maintained using 
field sensors, temperature sensors for the air environment, and an optimized airflow system. The cooling 
effectivity was enhanced by two strong fans per waveguide combined with two side plates at the dish holder 
to channel airflow to the area of the Petri dishes. This system operated at a steady frequency of 900 MHz, 
and the SAR variability was below 6%, with a temperature rise of 0.02℃/(W/kg) of the average SAR value 
following exposure of cell monolayers and with an excellent SAR efficiency of above 50 (W/kg)/W; the 
temperature difference between the RF-exposed and sham-exposed chambers did not exceed 0.1℃. Blind 
condition was run in experiments. The computer randomly determines which of the two waveguides was 
exposed in each trial. The exposure conditions and monitor data were sent to the IT’IS Foundation via e-mail 
and decoded by that foundation following the data analysis.

Exposure procedure
At 12 h after seeding, Neuro-2a cells were subjected to 900 MHz GSM Talk signals for 24 h. To 

evaluate the SAR-related effects of RF-EMFs exposure, the dishes were randomly divided into the following 
groups: (1) 0 W/kg (negative control or positive control); (2) 0.5 W/kg (either sham exposure or RF-EMFs 
exposure); (3) 1 W/kg (either sham exposure or RF-EMFs exposure); (4) 2 W/kg (either sham exposure 
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or RF-EMFs exposure). For the positive control, cells were exposed to methyl methanesulfonate (MMS) 
(Sigma-Aldrich) at a concentration of 0.2 mM for 1 h before harvesting. Following exposure, the cells were 
simultaneously subjected to the alkaline comet assay and the FPG-modified alkaline comet assay. The same 
exposure procedure was performed for the measurements of ROS and cell viability. In parallel, the negative 
and positive controls were maintained in the same incubator. To evaluate the role of OGG1 in RF-induced 
DNA damage, Neuro-2a cells were divided into two groups: (1) control siRNA group; (2) OGG1 siRNA group. 
After the interference test, the two groups were examined via RT-PCR. To determine the effects of RF-EMFs 
exposure after inhibition of OGG1, the following groups were examined: (1) control siRNA group (sham 
exposure or RF-EMFs exposure); (2) OGG1 siRNA group (sham exposure or RF-EMFs exposure). The same 
exposure procedure was performed for the colorimetric cell counting kit-8 (CCK-8; Dojindo, Japan) assay, 
the alkaline comet assay and the FPG-modified alkaline comet assay.

RNA interference in Neuro-2a cells
Cells were transfected with OGG1-specific siRNA composed of the following sense and antisense 

sequences: 5’-GCUUGAUGAUGUCACUUAUTT-3’ (sense) and 5’-AUAAGUGACAUCAUCAAGCTT-3’ (antisense). 
The cells were transfected with the siRNA duplexes using Oligofectamine (Invitrogen, Carlsbad, CA, USA). 
OptiMEM (Invitrogen) was used as a serum-free medium to prepare working solutions of the transfection 
reagent and the siRNAs. Neuro-2a cells were cultured in 35 mm plastic Petri dishes at 1.5 × 105 cells/dish 
and transfected with siRNA targeting OGG1 (Invitrogen) or a non-targeted control siRNA (Invitrogen) using 
the transfection reagent LipofectamineRNAiMAX (Invitrogen) according to the manufacturer’s instructions. 
Neuro-2a cells were transfected with siRNA for 24 h before subjected to RF-EMFs treatment, and then 
collected for various other treatments.

Cell viability assay
The effects of RF-EMFs exposure on cell viability were evaluated via the CCK-8 assay. According to the 

manufacturer’s instructions, Neuro-2a cells were plated at a density of 3 × 105 cells/dish in 35 mm plastic 
Petri dishes and exposed to 900 MHz RF-EMFs at a SAR of 0, 0.5, 1 or 2 W/kg for 24 h; alternatively, this 
treatment was performed after OGG1 siRNA transfection. Then, 80 µl of CCK-8 mixture was added to the 800 
µl of remaining medium per dish for 30 minutes at 37℃ in the dark. Then, the medium containing CCK-8 was 
transferred to a 96-well plate. The absorbance at 450 nm was measured (SPECTRAFLUOR, TECAN, Sunrise, 
Austria), and five parallel wells were assessed in each experiment.

Assay of intracellular ROS
The intracellular ROS levels were estimated using the non-fluorescent probe 2’, 7’-dichlorofluorescein 

diacetate (DCFH-DA) (Beyotime Company, China) according to the manufacturer’s instructions with slight 
modifications. Cells were harvested after RF-EMFs exposure, treated with 20 µM DCFH-DA, and incubated 
in the dark for 30 minutes. Approximately 104 cells were analyzed using an InfiniteTM M200 microplate 
reader (Tecan, Switzerland); the fluorescence wavelengths used were 488 nm for excitation and 525 nm 
for emission.

Alkaline comet assay and FPG-modified alkaline comet assay
An alkaline comet assay and an FPG-modified alkaline comet assay were performed to determine DNA 

strand breaks (single- or double-strand breaks) after exposure to the RF-EMFs system. The methods were 
slightly optimized compared to those previously described [30]. Briefly, cells at a density of 2.5-3 × 105 cells/
ml/dish were collected after exposure to RF-EMFs or MMS and were detached via trypsinization. Then, the 
cells were mixed with preheated (37℃) 0.65% low melting point (LMP) agarose at a ratio of 1:10 (v/v) 
on Comet Slides (Trevigen, Gaithersburg, MD, USA). After pre-chilling at 4℃ for 30 min, the Comet Slides 
were soaked in the lysis solution (Trevigen) for 2 h at 4℃. Next, the DNA on the slides was unwound for 
approximately 30 min in an alkaline buffer (1 mM Na2EDTA, 300 mM NaOH, pH13) at room temperature in 
the dark. They were subsequently subjected to electrophoresis for 40 min, washed twice in dH2O to remove 
excess reagent, and transferred to 75% ethyl alcohol for 5 min. Full-length and fragmented DNA was stained 
with diluted SYBR® Green I (Invitrogen) and visualized using a Leica fluorescence microscope (Germany). 
The FPG-modified alkaline comet assay was performed to identify DNA base damage or the levels of FPG-
sensitive sites. After the lysis step, the slides were washed three times with enzyme buffer solution, and 
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the mixtures were treated with 60 µM enzyme buffer or FPG solution (1:1000; New England Biolabs, 
Ipswich, MA, USA) individually for 30 min before unwinding based on the manufacturer’s instructions. The 
subsequent treatment procedure was performed in the same manner as the alkaline comet assay.

The levels of DNA damage were expressed as follows: (a) the tail length (TL) (measured from right 
border of head area to end of tail in micrometer (µm)); (b) the tail moment (TM) (calculated as the product 
of the tail length and the percentage of DNA in the tail in arbitrary units); and (c) the tail DNA (%) (calculated 
as the ratio of the DNA present in the tail to the total DNA content). The average of the scores of at least 150 
nuclei from each sample in every independent experiment was used in data analysis and five independent 
experiments were performed. All of the comet assay parameters were assessed using a computerized image 
analysis system (Comet Assay Software Project, CASP Lab, Wroclaw, Lower Silesia, Poland).

Statistical analysis
Statistical analyses were performed using SPSS 13.0 software (SPSS Inc., Chicago, IL, USA). Differences among 
multiple groups were evaluated using a one-way ANOVA with Dunnett’s post hoc test. Two-tailed Student’s 
t-test was used to determine differences between control and experimental groups as previously described 
[30]. The values were expressed as the means ± standard error of the mean (SEM) of five independent 
experiments. Differences were considered to be statistically significant at p < 0.05.

Results

RF-EMFs exposure does not induce cytotoxicity or DNA strand breaks
After exposure to 900 MHz RF-EMFs radiation at a SAR of 0, 0.5, 1 or 2 W/kg for 24 

h, no significant differences were found between the sham and RF-EMFs exposure groups 
(Fig. 1A). DNA fragmentation was quantified using CASP Lab software to analyze the tail 

Fig. 1. The effect of RF-EMFs radiation on cell viability and DNA strand breakage in Neuro-2a cells. Cell via-
bility was examined via a CCK-8 assay and MMS (0.3 mM) was used for positive control. The DNA migration 
pattern of Neuro-2a cells was evaluated via an alkaline comet assay after exposure to RF-EMFs at a SAR of 
0, 0.5, 1, or 2 W/kg, or to MMS (0.2 mM) as a positive control; a negative control group was also evaluated. 
DNA strand breaks in all groups were measured as tail DNA (%), tail moment, and tail length. More than 150 
nuclei were analyzed in each group for each experiment. The bars represent the mean ± SEM values from at 
least 5 separate experiments. *p<0.05 compared with the negative control group.
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DNA (%) (Fig. 1B), tail moment (Fig. 1C) and tail length (Fig. 1D). The graphs showed that 
for the positive control (MMS-treated) group, all comet assay parameters were significantly 
increased, which suggested that the MMS dose effectively induced DNA strand breaks and 
that the comet assay functioned appropriately. However, no differences in DNA migration 
were observed after RF-EMFs exposure at a range of SARs.

Fig. 2. The effect of RF-EMFs exposure on DNA base damage and the ROS levels in Neuro-2a cells. (A) Comet 
assay images of the groups subjected to sham or RF-EMFs exposure at a SAR value of 2 W/kg, as measured 
by a buffer-based or FPG-modified alkaline comet assay. (B) The ROS values are expressed as the increases 
in fluorescence intensity at a SAR of 0, 0.5, 1 or 2 W/kg. (C, D and E) Oxidative DNA base damage in Neuro-2a 
cells after exposure to RF-EMFs at 0.5 W/kg, 1 W/kg or 2 W/kg for 24 h or to MMS (0.2 mM) for 1 h, as mea-
sured by buffer-based or FPG-modified alkaline comet assays. The levels of DNA base damage were deter-
mined by tail DNA (%), tail moment, and tail length. More than 150 nuclei were analyzed from each group 
for each experiment. The bars represent the mean ± SEM values from at least five independent experiments. 
* p<0.05 compared with the FPG-treated control group and the buffer-treated RF-EMF-exposed group.
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RF-EMFs exposure at 900 MHz induces oxidative DNA base damage
An FPG-modified alkaline comet assay was performed to detect DNA base damage in 

Neuro-2a cells after exposure to RF-EMFs and MMS. The 2 W/kg group (Fig. 2A) exhibited a 
significantly increased tail DNA (%) (Fig. 2C) and tail moment (Fig. 2D), but not tail length 
(Fig. 2E), compared with the buffer-treated exposure group (p < 0.05) and the FPG-treated 
control group (p < 0.05). However, these remarkable increases were not detected in the 0.5 
W/kg or the 1 W/kg RF-EMFs-exposed groups compared with the sham-exposed groups.

The intracellular ROS levels of these groups were also detected. Concomitant with the 
results of the FPG-modified alkaline comet assay, both the positive control group and the 
2 W/kg RF-EMFs-exposed groups showed significantly increased ROS levels compared to 
the negative control group and the 2 W/kg sham-exposed group. The 0.5 W/kg and 1 W/kg 
groups showed no differences between the RF-EMFs-exposed and sham-exposed conditions 
(Fig. 2B).

Fig. 3. OGG1 inhibition following RF-EMFs exposure at 2 W/kg in Neuro-2a cells leads to the exacerbation 
of DNA base damage but does not induce DNA strand breakage or changes in cell viability. (A) Cells were 
harvested 24 h after transfection with OGG1 siRNA or control siRNA, and the OGG1 expression level was 
quantified using RT- PCR. (B) The viability of Neuro-2a cells was detected via a CCK-8 assay after OGG1 
knockdown followed by sham or RF-EMF exposure at 2 W/kg. (C) The level of DNA strand breakage was 
detected via an alkaline comet assay. (D) Images from the FPG-modified alkaline comet assay after OGG1 
silencing following sham or RF exposure at 2 W/kg. (E, F and G) The levels of DNA base damage as measured 
by tail DNA (%), tail moment and tail length. The bars represent the mean ± SEM values from at least five 
independent experiments. * p <0.05.
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OGG1 inhibition increases DNA base damage following RF-EMFs exposure at 2 W/kg
To investigate whether OGG1 was involved in protecting Neuro-2a cells from RF-

EMFs exposure-induced DNA damage, siRNA was used to inhibit the intracellular mRNA 
expression of OGG1. OGG1 siRNA transfection for 24 h led to a clear decrease in OGG1 mRNA 
compared with control siRNA transfection (Fig. 3A). Then, the OGG1-silenced Neuro-2a cells 
were subjected to the same RF-EMFs exposure treatments as described above. RF-EMFs 
exposure at 2 W/kg did not affect the viability of Neuro-2a cells in either the OGG1 or the 
control siRNA-transfected group (Fig. 3B). The alkaline comet assay was used to further 
investigate DNA strand breakage. No significant differences were observed between the 
control siRNA-transfected RF-EMFs-exposed group and the OGG1 siRNA-transfected sham-
exposed group. These results indicated that RF-EMFs exposure at 2 W/kg did not induce 
DNA strand breakage, as demonstrated by tail DNA (%), after OGG1 inhibition, as shown in 
Fig. 3C. Subsequently, an FPG-modified alkaline comet assay was performed to detect DNA 
base damage following RF-EMFs exposure at 2 W/kg (Fig. 3D). After statistical analysis, for 
the OGG1-silenced RF-EMFs-exposed cells at 2 W/kg, the tail DNA (%) , the tail moment 
and the tail length were significantly increased, compared with the corresponding cells with 
buffer treatment group (p<0.05) and sham-exposed group (p<0.05) (Fig. 3E, 3F and 3G).

RF-EMFs exposure at 1 W/kg induces DNA base damage after OGG1 inhibition
We investigated the possible impact of RF-EMFs exposure at 1 W/kg on DNA base 

damage after OGG1 inhibition. OGG1-silenced cells exposed to RF-EMFs at 1 W/kg with 

Fig. 4. OGG1 inhibition in Neuro-2a cells leads to DNA base damage following RF-EMFs at 1 W/kg exposure. 
Cells were transfected with OGG1 or control siRNA for 24 h, following sham or RF-EMF exposure at a SAR 
of 1 W/kg; then, an FPG-modified alkaline comet assay was performed. The amount of DNA base damage 
was measured as tail DNA (%) (A), tail moment (B), and tail length (C). The bars represent the mean ± SEM 
values from five independent experiments. * p <0.05.
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FPG treatment showed significant increases in tail DNA (Fig. 4A) and tail moment (Fig. 4B), 
but not tail length (Fig. 4C), compared to the corresponding cells with buffer treatment. 
However, no apparent difference in DNA migration was detected between the control siRNA 
sham-exposed group and OGG1 siRNA sham-exposed group.

Discussion

In the present study, we demonstrated that RF-EMFs exposure at 0, 0.5, 1 or 2 W/kg does 
not lead to DNA strand breakage in the presence or absence of OGG1 inhibition. However, 
OGG1 inhibition increases the extent of DNA base damage induced by RF-EMFs exposure at 
2 W/kg. Moreover, OGG1-silenced cells exhibited obvious DNA base damage following RF-
EMFs exposure at 1 W/kg. The current data suggest that OGG1 may play an important role 
in protecting against RF-EMFs exposure-induced oxidative DNA base damage.

Mobile phones using the 900 MHz systems are used worldwide and these devices emit 
EMFs. Studies from other laboratories suggest that RF-EMFs may have adverse effects on 
human health including alterations in the expression pattern of cytoskeleton regulating 
factors, decreasing of cell viability of the rat cortical neurons, negative effects on semen 
quality et al. [36-38]. The GSM signal at 2 W/kg affected qualitative and quantitative features 
of hippocampal pyramidal cells [39]. The potential biological effects of such exposure should 
not be ignored. Given the long time use of mobile communications in everyday life, whether 
RF-EMF exposure affects human health is a major concern. However, their genotoxic effects 
remain controversial. The 1.6 and 2.0 W/kg safety standards were established by the USA 
and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [40]. 
Whether RF-EMF exposure affects DNA integrity at a safety standard is unknown. Thus, 
0.5, 1, and 2 W/kg were selected as the doses of 900 MHz RF-EMFs radiation in this study. 
The experiments showed that the viability of Neuro-2a cells was not influenced in any of 
the groups tested; this finding was consistent with previous studies [41] indicating that 
the SAR of 2 W/kg have insufficient stimulus to influence the viability. Exposure to 900 
MHz RF-EMFs did not induce DNA strand breaks. No evidence of DNA strand breaks was 
apparent in previous studies performing alkaline comet assays on mouse fibroblast cells 
[42], human glioblastoma cells [43], human ES1 diploid fibroblasts cells, Chinese hamster 
V79 cells [44], or human white blood cells [45]. However, DNA strand breaks were found in 
human trophoblast cells [46] and in sperm [47]. The discrepancy between these studies and 
our data is because RF-EMFs exposure may induce DNA damage in a manner that partially 
depends on the exposure duration time, the intensity of the RF-MFs, as well as the different 
treatments and cell types used in experiments. The present study provides evidence that 
900 MHz RF-EMFs have insufficient energy to directly induce DNA strand breaks, and this 
finding is in agreement with previously obtained results in vivo[48].

Previous studies have suggested that RF-EMFs may stimulate ROS generation both in 
vivo [49] and in vitro [50]. Within the structure of DNA, DNA bases are considered to be 
highly sensitive to ROS oxidation, and guanine is particularly susceptible to ROS-induced 
modification because of its low redox potential [51]. Therefore, we speculated that DNA 
bases, particularly purines, might be more sensitive to low-energy RF-EMFs radiation than 
DNA strands. In this study, an FPG-modified alkaline comet assay was used to detect damage 
to DNA bases, especially guanine. We demonstrated that 900 MHz RF-EMFs exposure at 2 
W/kg significantly induced oxidative DNA base damage, as demonstrated by the tail DNA 
(%) and the tail moment but not the tail length. These inconsistent results may be attributed 
to the fact that the tail length only represents the length of the damaged DNA, whereas the 
other comet assay parameters represent not only the length but also the quantity of damaged 
DNA [52]. In addition, the tail DNA (%) and the tail moment showed more significant 
discrepancies and stronger correlations than the tail length, as previously described [30]. 
Several authors have presented evidence of excessive free radical formation after RF-EMFs 
exposure [47, 53]. Moreover, RF-EMFs exposure was associated with excess production of 
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free radicals, especially ROS [47, 48, 53], as also concluded in the present study. The finding 
that the levels of DNA base damage were concomitant with similar increases in the ROS levels 
suggested that base damage might be resulted from oxidative stress. However, it is unknown 
how the ROS levels increase following RF-ENFs exposure. A study suggested that RF-EMFs 
exposure might elevate the levels of ROS by stimulating plasma membrane NADH oxidase 
or by decreasing the activity of antioxidant enzymes [54]. Therefore, further investigation is 
needed to elucidate the mechanisms underlying RF-EMFs radiation-induced ROS generation.

There are many studies concerning the role of several genes in radio sensitivity such 
as BAG-1 (bcl-2 associated athanogene), RVI (regulatory volume increase), etc [55, 56]. 
However, genes involved in RF-EMFs sensitivity were unclear. Oxidative DNA damage caused 
by free radicals and other oxidizing agents is mainly repaired by BER, which involves the 
excision of a modified base in the first step from DNA by a DNA glycosylase that hydrolyzes 
the N-glycosidic bond between the modified base and the sugar moiety, generating an 
apurinic/apyrimidinic (AP) site[33]. Subsequent incision by APE results in single strand 
breaks and a single base gap as a repair intermediate. A DNA polymerase fills in the gap with 
the correct nucleotide. Finally, a DNA ligase completes the repair process and restores the 
integrity of the helix by sealing the nick. OGG1 is a major DNA glycosylase involved in BER 
following oxidative damage to nuclear and mitochondrial DNA (mtDNA). As a major system 
for repairing oxidative DNA damage, the DNA BER pathway is initiated by the activity of 
lesion-specific DNA glycosylases that recognize and excise damaged DNA bases, particularly 
8-oxoG, which is an oxidized form of guanine that is a major oxidative DNA base lesion 
implicated in carcinogenesis and aging in several biological systems [57, 58]. Some studies 
[59-63] have provided evidence supporting the significant effect of OGG1 on the removal 
of 8-oxoG, thereby protecting against DNA oxidation; such a mechanism aids in avoiding 
various types of oxidative DNA damage-associated disease processes such as tumorigenesis 
or carcinogenesis [64], inflammation [65], and neurodegeneration [66]. To investigate the 
role and the effect of OGG1 in RF-EMFs-induced oxidative DNA damage, cultured Neuro-2a 
cells were transfected with siRNA against OGG1 to inhibit its expression. Then, these cells 
were exposed to 900 MHz RF-EMFs radiation. The results of the FPG-modified alkaline 
comet assay showed significant exacerbation of DNA base damage at SARs of 2 W/kg and 
1 W/kg. Therefore, we demonstrated a critical role of OGG1 in protecting against RF-EMFs-
induced oxidative DNA base damage and RF-EMFs could even induce DNA base damage 
at lower SAR of 1 W/kg without OGG1. Previous similar studies have indicated that down 
regulating OGG1 leads to greatly exacerbated xanthine oxidase-induced mtDNA damage [67] 
and oxidant-induced apoptosis [67, 68]. Some studies have also indicated that substantially 
more severe oxidative lesions occur in OGG1-deficient mice both in vivo [66] and in vitro 
[32]. Up regulating or over expressing OGG1 has been shown to protect both nuclear DNA 
[69] and mtDNA [70, 71] from oxidative damage and to suppress cytotoxicity in response 
to a variety of oxidative stresses. These consistent results imply the pivotal role of OGG1 in 
the defense against oxidative DNA lesions. Cells isolated from OGG1-null mice are deficient 
in the repair of 8-oxoG [72], and cellular extracts from these mice lack the ability to excise 
8-oxoG from double-stranded DNA [73], strongly suggesting that base excision by OGG1 is 
the major, and apparently the only, physiologically relevant mechanism for the removal of 
8-oxoG from nuclear DNA in mammalian cells. As above mentioned, the damaged DNA base 
would be recognized by OGG1, and nicked by APE1 to form SSBs which could be detected 
by alkaline comet assay, however, we found that RF-EMFs exposure at 2 W/kg does not 
lead to DNA strand breakage in the absence of OGG1 inhibition, which may be attributed to 
the rapid repair of APE1 mediated single stand breaks or action of several enzymes in the 
induction of oxidative DNA damage[66, 74, 75]. However, in comparison to nuclear DNA, 
mtDNA is considerably more sensitive to oxidative damage [76, 77] and in fact, nuclear DNA 
is less sensitive to ROS generation [77]. Therefore, further studies are needed to identify 
the primary target DNA (nuclear DNA and/or mtDNA) on which OGG1 functions and the 
exact mechanisms by which OGG1 protects against RF-EMFs-induced DNA oxidative lesion 
formation.
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In summary, this study demonstrated that the down-regulation of OGG1 expression 
apparently exacerbates RF-EMFs-induced DNA base damage in Neuro-2a cells, indicating 
that OGG1 plays a critical role in protecting cells against RF-EMFs exposure-induced DNA 
base damage. This role of OGG1 may provide insight into the molecules and substances in 
cells defensing against the hazardous biological effects of RF-EMFs. In addition, the data 
regarding oxidative DNA lesion formation suggested that OGG1 might be a potential target 
for preventing RF-EMFs-induced genotoxicity. This study indicates a need to develop effective 
tools to decrease the dose and the duration of RF-EMFs exposure in daily life and to improve 
the quality of the defense systems in the body against potential RF-EMFs-induced damage.
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