ATP-dependent potassium (KATP) channels exist in high density in the sarcolemmal membrane of heart muscle cells. Under normoxic conditions these channels are closed, but they become active when the intracellular ATP level falls. This leads to a shortening of the action potential duration, rendering the heart susceptible for life-threatening arrhythmias. Molecular biology has revealed that KATP channels consist of heteromultimers of the inwardly rectifying channel Kir6.2 and the sulfonylurea receptor SUR. To date, three types of SURs were identified, representing the pancreatic (SUR1), the cardiac (SUR2A) and the smooth muscle (SUR2B) KATP channel. In order to develop a novel therapeutic principle against ischemia-induced life-threatening arrhythmias leading to sudden cardiac death, the cardioselective KATP channel blocker HMR 1883 was developed. This substance inhibits the sarcolemmal cardiac KATP channel activated by the channel opener rilmakalim halfmaximally at concentrations of 0.6–2.2 μmol/l, and substantially affects pancreatic KATP channels at 9–50 times higher concentrations. KATP channels of the coronary vascular system are only slightly blocked by HMR 1883 when activated by hypoxia. The substance was potently effective in preventing ventricular fibrillation in a conscious dog model, and thus can be considered to be a potential novel drug candidate against sudden cardiac death.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.