Background/Aims: Migration of dendritic cells (DCs), antigen presenting cells that link innate and adaptive immunity, is critical for initiation of immune responses. DC migration is controlled by the activity of different ion channels, which mediate Ca2+ flux or set the membrane potential. Moreover, cell migration requires local volume changes at the leading and rear end of travelling cells, which might be mediated by the fluxes of osmotically active solutes, including Cl-. The present study explored the functional expression, regulation and role of Cl- channels in mouse bone marrow-derived DCs. Methods/Results: In whole-cell patch clamp experiments we detected outwardly rectifying Cl- currents which were activated by elevation of cytosolic Ca2+, triggered either by ionomycin in the presence of extracellular Ca2+ or mobilization of Ca2+ by IP3 Most importantly, Ca2+-activated Cl- channels (CaCCs) were activated by CCL21 (75 ng/ml), an agonist of the chemokine receptor CCR7. The currents showed sensitivity to Cl- channel blockers such as tannic acid (10 µM), digallic acid (100 µM) and more specific CaCC blockers niflumic acid (300 µM) and AO1 (20 µM). According to RT-PCR and Western blot data, Anoctamin 6 (ANO6) is expressed in DCs. Knock-down of ANO6 with siRNA led to inhibition of CaCC currents in DCs. Moreover, chemokine-induced migration of both immature and LPS-matured DCs was reduced upon ANO6 knock-down. Conclusion: Our data identify ANO6 as a Ca2+-activated Cl- channel in mouse DCs, show its activation upon chemokine receptor ligation and establish an important role of ANO6 in chemokine-induced DC migration.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.