Background: Sudden death due to malignant ventricular arrhythmias is the most important cause of death in acute myocardial infarction. Improved knowledge about the pathophysiology underlying these arrhythmias is essential in the search for new anti-arrhythmic strategies. Lysophosphatidylcholine (LPC), a hydrolysis product of (membrane) phospholipid degradation, is one of the most potent pro-arrhythmic substances that accumulate in the human heart during myocardial ischemia. The aim of this study was to set up and validate an in vitro experimental system for studies on the effects of LPC on electrophysiological parameters in beating cardiomyocytes. Methods and Results: Spontaneously beating HL-1 cardiomyocytes were cultured on multielectrode array microchips for three days for the recording of electrical activities in the form of field potentials (FP). FPs were recorded at baseline and after addition of 2, 4, 8, 12, 16, 20, and 24 µM of LPC to the cell medium (n=9). We found that LPC could induce rapid effects on electrical parameters in the HL-1 cells. The overall half-maximal effective concentration (EC50) of LPC was around 12 µM. The beating rate and peak-peak amplitude of FP thus decreased at concentrations ≥ 12 µM and were inversely proportional to increased LPC concentration. The duration of FP was significantly prolonged with LPC above 12 µM and was concentration-dependent. LPC delayed signal propagation, an effect which was mimicked by blocking gap junctions with heptanol and attenuated by pre-treatment with isoprenaline and atropine. Finally, asynchronous activity was induced by LPC at >12 µM. Conclusions: LPC induced prompt and pronounced electrophysiological alterations that may underlie its observed pro-arrhythmic properties. Our in vitro model with HL-1 cells and microelectrode array system may be a useful tool for preclinical studies of electrophysiological effects of various pathophysiological concepts.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.