Background/Aims: β-Dystroglycan (β-DG) is a transmembrane glycoprotein that links the intracellular cytoskeleton to the extracellular matrix and is crucial for the molecular pathway of lateral force transmission in muscle. We aimed to investigate the effect of decreasing sarcolemmal cholesterol on the distribution of β-DG, its interaction with dystrophin and the impact on the contraction efficiency of muscle. Methods: Isolated rat extensor digitorum longus muscles were incubated with methyl β-cyclodextrin (MβCD) to deplete cholesterol and with MβCD-cholesterol to restore cholesterol. Electric stimulation protocols were used to determine muscle force and fatigue. Detergent-resistant membranes (lipid rafts) were separated from isolated skeletal muscle sarcolemma. The distribution and interactions of β-DG, caveolin-3 and dystrophin were determined by an immunoreactivity analysis. Results: Cholesterol depletion in muscle results in a weakened force of contraction, which recovers after cholesterol restoration. The rate of fatigue is unaffected, but fatigue recovery is dependent upon cholesterol restoration. MβCD modifies the structures of lipid rafts obtained from MβCD-treated muscles by, displacing the membrane proteins β-DG and caveolin-3 f from the lipid raft, thus reducing the interaction of β-DG with dystrophin. Conclusion: Cholesterol depletion weakens the muscle contractile force by disturbing the sarcolemmal distribution of β-dystroglycan and its interaction with dystrophin, two key proteins in the alignment of lateral force transmission pathway.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.