Research on bacterial mechanosensitive (MS) channels has since their discovery been at the forefront of the MS channel field due to extensive studies of the structure and function of MscL and MscS, two of the several different types of MS channels found in bacteria. Just a few years after these two MS channels were cloned their 3D structure was solved by X-ray crystallography. Today, the repertoire of multidisciplinary approaches used in experimental and theoretical studies following the cloning and crystallographic determination of the MscL and MscS structure has expanded by including electronparamagnetic resonance (EPR) and Förster resonance energy transfer (FRET) spectroscopy aided by computational modelling employing molecular dynamics as well as Brownian dynamics simulations, which significantly advanced the understanding of structural determinants of the gating and conduction properties of these two MS channels. These extensive multidisciplinary studies of MscL and MscS have greatly contributed to elucidation of the basic physical principles of MS channel gating by mechanical force. This review summarizes briefly the major experimental and conceptual advancements, which helped in establishing MscL and MscS as a major paradigm of mechanosensory transduction in living cells.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.