Rationale - The plateau phase of the ventricular action potential is the result of balanced Ca2+ influx and K+ efflux. The action potential is terminated by repolarizing K+ currents. Under β-adrenergic stimulation, both the Ca2+-influx and the delayed rectifier K+ currents IK are stimulated to adjust the cardiac action potential duration to the enhanced heart rate and to ascertain adequate increase in net Ca2+ influx. Intracellularly, a Calsequestrin2 (CASQ2)-ryanodine receptor complex serves as the most effective Ca2+ reservoir/release system to aid the control of intracellular Ca2+ levels. Currently, it is unclear if disease-associated CASQ2 gene variants alter intracellular free Ca2+ concentrations and if cardiac ion channels are affected by it. Objective – The goal of this study is to test if CASQ2 determines intracellular free Ca2+ concentrations and to identify cardiac ion channels that are affected by it. Further, we aim to study disease-associated CASQ2 gene variants in this context. Methods and Results - Here, we study the effects of the CASQ2 mutations R33Q, F189L, and D307H, located in highly conserved regions, on the functions of cardiac potassium channels in Xenopus oocytes using two electrode voltage clamp. As a result, CASQ2 wild type and CASQ2-mutants modulated hERG functions differently. Free Ca2+ measurements and molecular dynamics simulations imply alterations in Ca2+ buffer capacity paralled by changes in the dynamic behavior of the CASQ2-mutants compared to CASQ2 wild type. Conclusions - These in vitro and in silico data suggest a regulatory role of CASQ2 on cytosolic Ca2+ and hERG channels which may contribute to the etiology of CPVT.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.