PPARγ agonists, such as pioglitazone, are widely used in the treatment of diabetes and several further disorders. They enhance transcription of the serum and glucocorticoid inducible kinase SGK1, which could in turn enhance gastric acid secretion by stimulating KCNQ1 K+ channels. The present study explored whether pioglitazone upregulates SGK1 protein expression in gastric glands and thus modifies gastric acid secretion. Food containing the PPARγ agonist pioglitazone (approximately 25mg/kg bw/day) was administered to gene-targeted mice lacking SGK1 (sgk1-/-, n=11) and their wild-type littermates (sgk1+/+, n=11). Western blotting was employed to analyze SGK1 expression, BCECF-fluorescence to determine acid secretion in isolated gastric glands and immunohistochemistry to elucidate KCNQ1 and H+/K+-ATPase protein abundance in the parietal cell membrane. Pioglitazone significantly increased SGK1 expression. Cytosolic pH and cellular buffer capacity were not significantly different between sgk1+/+ and sgk1-/- mice and not significantly modified in either genotype by pioglitazone. Without pioglitazone treatment, Na+-independent pH-recovery following an ammonium pulse (ΔpH/min) reflecting H+/K+-ATPase activity was again similar in sgk1+/+ and sgk1-/- mice. Pioglitazone significantly increased ΔpH/min (≈3 fold) in sgk1+/+ but not in sgk1-/- mice. H+/K+-ATPase inhibitor omeprazole (100 μM) abolished ΔpH/min in both genotypes irrespective of pioglitazone treatment. Increase in local K+ concentrations to 35 mM (replacing Na+/NMDG) significantly increased ΔpH/min and abrogated the differences between genotypes. KCNQ1 and H+/K+-ATPase protein abundance in the parietal cell membrane was enhanced by pioglitazone treatment in sgk1+/+ but not in sgk1-/- mice. In conclusion, pioglitazone increases gastric acid secretion, an effect at least partially due to stimulation of SGK1 expression and SGK1-dependent upregulation of KCNQ1.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.