Mature osteoclasts have an increased citric acid cycle and mitochondrial respiration to generate high ATP production and ultimately lead to bone resorption. However, changes in metabolic pathways during osteoclast differentiation have not been fully illustrated. We report that glycolysis and oxidative phosphorylation characterized by glucose and oxygen consumption as well as lactate production were increased during receptor activator of nuclear factor-ĸB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 and bone marrow-derived macrophage cells. Cell proliferation and differentiation varied according to glucose concentrations (0 to 100 mM). Maximal cell growth occurred at 20 mM glucose concentration and differentiation occurred at 5 mM concentration. Despite the similar growth rates exhibited when cultured cells were exposed to either 5 mM or 40 mM glucose, their differentiation was markedly decreased in high glucose concentrations. This finding suggests the possibility that osteoclastogenesis could be regulated by changes in metabolic substrate concentrations. To further address the effect of metabolic shift on osteoclastogenesis, we exposed cultured cells to pyruvate, which is capable of promoting mitochondrial respiration. Treatment of pyruvate synergistically increased osteoclastogenesis through the activation of RANKL-stimulated signals (ERK and JNK). We also found that osteoclastogenesis was retarded by blocking ATP production with either the inhibitors of mitochondrial complexes, such as rotenone and antimycin A, or the inhibitor of ATP synthase, oligomycin. Taken together, these results indicate that glucose metabolism during osteoclast differentiation is accelerated and that a metabolic shift towards mitochondrial respiration allows high ATP production and induces enhanced osteoclast differentiation.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.