Mixed lineage kinase 3 (MLK 3) is a recently described member of the MLK subfamily of Ser/Thr protein kinases that interacts with MAPK pathways. The aim of this study was to test the potential interaction of MLK 3 with signaling pathways stimulated by PDGF in rat mesangial cells. We have established a stable cell line expressing human MLK 3 in rat glomerular mesangial cells. The effects of PDGF on proliferation and matrix mRNA expression were examined. In control (vector-transfected) mesangial cells PDGF increased [3H]-thymidine incorporation significantly in a concentration-dependent manner. In mesangial cells expressing MLK 3, PDGF-induced increase in DNA synthesis was significantly reduced. PDGF also induced fibronectin and collagen I mRNA expression in control cells, the effects of which were also significantly blocked in MLK 3-transfected cells. To understand the potential interaction of MLK 3 over expression with the MAPK pathways and to examine the potential mechanism of the effects of MLK 3 over expression on proliferation and matrix expression, activation of ERK2, JNK1 and p38 were examined. ERK2 activation was increased several fold by PDGF in control cells but was attenuated significantly in MLK 3 expressing cells. PDGF did not have any effect on JNK and p38 activation, in either cell types. Using the same stable-transfected cell line, identical results were obtained on proliferation and matrix expression with sarafotoxin-s6b (endothelin receptor agonist) another potent mitogenic and sclerotic agent for mesangial cells. These results indicate an important role for MLK 3 in the regulation of growth and matrix expression in mesangial cells.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.