In Ehrlich ascites tumour (EAT) cells the main route for dTTP required for DNA synthesis is closely related to thymidylate synthesis activity via the de novo pathway. However, more than 10-time of thymidylate (dTMP) is synthesised by cytosolic thymidine kinase (TK1) via the salvage pathway than needed for DNA synthesis in this cells. Therefore, this study focus to determine if a substrate cycle exists between thymidine (dTdR) and dTMP in the EAT cells. Results show that the ratio of K′eq/Q for the TK1 reaction is 264.2 and for the thymidylate 5′-phosphatase (dTMPase) reaction is 110.9 in the exponentially growing cells, respectively. Since the apparent ratios of K′eq/Q for both reactions are different from equality (ñ1) by two orders, it appears as a non-equilibrium reaction. This indicates that when TK1 and dTMPase are simultaneously active in the exponentially growing cells, a substrate cycle results. The regulation of the excess of non-essential products of dTdR/dTMP for DNA synthesis is involved in a substrate cycle for maintaining a balanced nucleotide pool, hence ensuring a balanced supply of the DNA precursor in the exponentially growing cells. As the tumours continue to grow, cells reached the stationary phase. The ratio of K′eq/Q for TK1 reaction is 7.7 and for the dTMPase reaction is 81.1, showing less than the equilibrium of two orders of magnitude. In this case, dTMPase could not act with TK1 together to form a pair of reaction, leading to an elevated concentration of intracellular dTMP and a dramatically excretion of dTdR into the ascites fluid.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.