Cystic fibrosis is caused by mutations in the CFTR gene. The most common of these mutations, DF508, results in a protein that is not trafficked to the apical plasma membrane but instead is retained and degraded in the endoplasmic reticulum (ER) by the 26S proteosome. However, this protein is functional upon plasma membrane expression. It has been theoretically estimated that even a modest (∼10%) increase in CFTR-associated chloride conductance can be beneficial in a clinical setting. Thus, understanding basic CFTR biogenesis is important, and identification of prototypical compounds that can increase CFTR expression and trafficking is potentially useful in the development of novel therapeutic strategies to treat cystic fibrosis. We report that mitomycin C (MMC) elicits such a response by increasing CFTR mRNA and protein expression in T-84 and HT-29 cells at very low, non-cytotoxic, pharmacologically relevant concentrations (0.1 µM) leading to enhanced chloride secretion. Thus, MMC may be a useful compound for understanding CFTR regulation and biogenesis.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.