The non-ideal properties of solutions containing high concentrations of macromolecules can result in enormous increases in the activity of the individual macromolecules. There is considerable evidence that macromolecular crowding and confinement not only occur in cells, but that these are major determinants of the activity of the proteins and other intracellular macromolecules. This concept has important implications for cell volume regulation because, under crowded conditions, relatively small changes in concentration, consequent to alterations of water content, lead to large changes in macromolecular activity which could provide a mechanism by which cells sense changes in their volume. This brief review considers 1) direct demonstrations that introducing a high concentration of appropriate macromolecules into cells in vitro produced volume regulatory changes, 2) the physical chemical principles involved in the effects of crowding of macromolecules on their activity, 3) estimates of the actual intracellular activity of macromolecules, 4) a proposed model of how changes in macromolecular crowding could signal volume regulation in cells, and 5) brief consideration of the complexities introduced by interactions between macromolecules, water and cosolutes. Conclusions: The hypothesis that macromolecular crowding provides a mechanism by which cells sense changes in their volume is plausible and is supported by striking observations in red blood cell ghosts and perfused barnacle muscle cells. However, the signaling molecules involved have not been identified, the proposed model is not fully consistent with the experiments, experimental verification in intact cells is lacking, and numerous alternative or additional mechanisms are not excluded.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.