Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by physicochemical reactions inducing oxidative stress in cells. Because in practice the efficacy of RT is limited by its toxicity to normal tissues, any strategy that selectively increases the radiosensitivity of tumor cells or boosts the radioresistance of normal cells is a valuable adjunct to RT. In this review, I summarize preclinical and clinical data supporting the hypothesis that ketogenic therapy through fasting and/or ketogenic diets can be utilized as such an adjunct in order to improve the outcome after RT, in terms of both higher tumor control and lower normal-tissue complication probability. The first effect relates to the metabolic shift from glycolysis towards mitochondrial metabolism, which selectively increases reactive oxygen species (ROS) production and impairs adenoside triphosphate (ATP) production in tumor cells. The second effect is based on the differential stress resistance phenomenon describing the reprogramming of normal cells, but not tumor cells, from proliferation towards maintenance and stress resistance when glucose and growth factor levels are decreased and ketone body levels are elevated. Underlying both effects are metabolic differences between normal and tumor cells. Ketogenic therapy is a non-toxic and cost-effective complementary treatment option that exploits these differences and deserves further clinical investigation.

1.
Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol 2017;3:524-548.
[PubMed]
2.
Holly JMP, Zeng L, Perks CM: Epithelial cancers in the post-genomic era: should we reconsider our lifestyle? Cancer Metastasis Rev 2013;32:673-705.
[PubMed]
3.
Gallagher EJ, LeRoith D: Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 2015;95:727-748.
[PubMed]
4.
Fine EJ, Champ CE, Feinman RD, Márquez S, Klement RJ: An evolutionary and mechanistic perspective on dietary carbohydrate restriction in cancer prevention. J Evol Health 2016;1:15.
5.
Stefansson V: Cancer: Disease of Civilization? New York, Hill and Wang, 1960.
6.
Lutz W: Leben ohne Brot. Die wissenschaftlichen Grundlagen der kohlenhydratarmen Ernährung, ed 16. Gräfelfing, Informed, 2004.
7.
Carrera-Bastos P, Fontes-Villalba M, O'Keefe JH, Lindeberg S, Cordain L: The Western diet and lifestyle and diseases of civilization. Res Rep Clin Cardiol 2011;2:15-35.
8.
Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al: Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005;81:341-354.
[PubMed]
9.
Levin I: Cancer among the American Indians and its bearing upon the ethnologicaI distribution of the disease. Z Krebsforsch 1910;9:422-435.
10.
Fouché FP: Freedom of negro races from cancer. Br Med J 1923;1:1116.
11.
Price W: Nutrition and Physical Degeneration: A Comparison of Primitive and Modern Diets and Their Effects. Oxford, Benediction Classics, 2010.
12.
Brown GM, Cronk LB, Boag TJ: The occurrence of cancer in an Eskimo. Cancer 1952;5:142-143.
[PubMed]
13.
Urquhart JA: The most northerly practice in Canada. 1935. CMAJ 1992;147:1193-1196.
[PubMed]
14.
Van Alstyne EVN, Beebe SP: Diet studies in transplantable tumors - I. The effect of non-carbohydrate diet upon the growth of transplantable sarcoma in rats. J Med Res 1913;29:217-232.
[PubMed]
15.
Minami S: Versuche an überlebendem Carcinomgewebe. Biochem Z 1923;142:334-350.
16.
Warburg O, Posener K, Negelein E: Über den Stoffwechsel der Carcinomzelle. Biochem Z 1924;152:309-343.
17.
Warburg O, Wind F, Negelein E: The metabolism of tumors in the body. J Gen Physiol 1927;8:519-530.
[PubMed]
18.
Cori CF, Cori GT: The carbohydrate metabolism of tumors. II. Changes in the sugar, lactic acid, and co-combining power of blood passing through a tumor. J Biol Chem 1925;65:397-405.
19.
Bensinger SJ, Christofk HR: New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 2012;23:352-361.
[PubMed]
20.
Brünings W: Beiträge zum Krebsproblem. 1. Mitteilung: Ueber eine diätetisch-hormonale Beeinflussung des Krebses. MMW Munch Med Wochenschr 1941;88:117-123.
21.
Brünings W: Beiträge zum Krebsproblem. 2. Mitteilung: Klinische Anwendungen der diätetisch-hormonalen Krebsbeeinflussung (‘Entzuckerungsmethode'). MMW Munch Med Wochenschr 1942;89:71-76.
22.
Schulte G, Schütz H: Insulin in der Krebsbehandlung. MMW Munch Med Wochenschr 1942;89:648-650.
23.
Reich F: Zur Insulinbehandlung der Kachexie bei Carcinom. Med Klin 1952;47:936-937.
[PubMed]
24.
Weiss J: Über Erfahrungen mit Insulin und kohlenhydratreduzierender Diät bei inkurablen Krebskranken. Med Klin 1957;52:1190-1191.
[PubMed]
25.
Nebeling L, Miraldi F, Shurin S, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995;14:202-208.
[PubMed]
26.
Klement RJ: Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol 2017;34:132.
[PubMed]
27.
Gonder U: Article on ketogenic dietary regimes for cancer highly misleading. Med Oncol 2017;34:109.
[PubMed]
28.
Warburg O: On the origin of cancer cells. Science 1956;123:309-314.
[PubMed]
29.
Seyfried TN, Shelton LM: Cancer as a metabolic disease. Nutr Metab (Lond) 2010;7:7.
[PubMed]
30.
Seyfried TN, Flores RE, Poff AM, D'Agostino DP: Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 2014;35:515-527.
[PubMed]
31.
Seyfried TN: Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol 2015;3:43.
[PubMed]
32.
Gillies RJ, Robey I, Gatenby RA: Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 2008;49:24S-42S.
[PubMed]
33.
Sattler UG, Mueller-Klieser W: The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 2009;85:963-971.
[PubMed]
34.
Demetrakopoulos GE, Linn B, Amos H: Rapid loss of ATP by tumor cells deprived of glucose: contrast to normal cells. Biochem Biophys Res Commun 1978;82:787-794.
[PubMed]
35.
Priebe A, Tan L, Wahl H, Kueck A, He G, Kwok R, et al: Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecol Oncol 2011;122:389-395.
[PubMed]
36.
Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ: Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism ? Ann N Y Acad Sci 2000;899:349-362.
[PubMed]
37.
Ahmad IM, Aykin-Burns N, Sim JE, Walsh SA, Higashikubo R, Buettner GR, et al: Mitochondrial O2- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem 2005;280:4254-4263.
[PubMed]
38.
Jelluma N, Yang X, Stokoe D, Evan GI, Dansen TB, Haas-Kogan DA: Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res 2006;4:319-330.
[PubMed]
39.
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR: Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009;418:29-37.
[PubMed]
40.
Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I: Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol 2012;8:589.
[PubMed]
41.
Poff AM, Ari C, Seyfried TN, D'Agostino DP: The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 2013;8:e65522.
[PubMed]
42.
Klement RJ, Champ CE: Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R's through dietary manipulation. Cancer Metastasis Rev 2014;33:217-229.
[PubMed]
43.
Allen BG, Bhatia SK, Anderson CM, Eichenberger-Gilmore JM, Sibenaller ZA, Mapuskar KA, et al: Ketogenic diets as an adjuvant cancer therapy: history and potential mechanism. Redox Biol 2014;2:963-970.
[PubMed]
44.
Klement RJ: The influence of ketogenic therapy on the 5 R's of radiobiology. Int J Radiat Biol 2017; DOI: 10.1080/09553002.2017.1380330.
[PubMed]
45.
Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016;66:271-289.
[PubMed]
46.
Klein S, Wolfe RR: Carbohydrate restriction regulates the adaptive response to fasting. Am J Physiol 1992;262:E631-E636.
[PubMed]
47.
Klement RJ: Calorie or carbohydrate restriction? The ketogenic diet as another option for supportive cancer treatment. Oncologist 2013;18:1056.
[PubMed]
48.
Klement RJ: Mimicking caloric restriction: what about macronutrient manipulation? A response to Meynet and Ricci. Trends Mol Med 2014;20:471-472.
[PubMed]
49.
Klement RJ, Fink MK: Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer. Oncogenesis 2016;5:e193.
[PubMed]
50.
Winter SF, Loebel F, Dietrich J: Role of ketogenic metabolic therapy in malignant glioma: a systematic review. Crit Rev Oncol Hematol 2017;112:41-58.
[PubMed]
51.
Mahoney LB, Denny CA, Seyfried TN: Calorie restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 2006;5:13.
[PubMed]
52.
Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, et al: Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-nu mouse model. PLoS One 2015;10:e0129802.
[PubMed]
53.
Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN: Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN Neuro 2010;2:e00038.
[PubMed]
54.
Krieger H: Grundlagen der Strahlungsphysik und des Strahlenschutzes, ed 3. Wiesbaden, Vieweg + Teubner, 2009.
55.
Marcu L, Bezak E, Allen BJ: Biomedical Physics in Radiotherapy for Cancer, ed 1. Collingwood, CSIRO Publishing, 2012.
56.
Wouters BG, Begg A: Irradiation-induced damage and the DNA damage response; in Joiner MC, van der Kogel AJ (eds): Basic Clinical Radiobiology, ed 4. Boca Raton, CRC Press, 2009, pp 11-26.
57.
Azzam EI, Jay-Gerin JP, Pain D: Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012;327:48-60.
[PubMed]
58.
Ward JF: The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol 1990;57:1141-1150.
[PubMed]
59.
Warters RL, Hofer KG: Cells radionuclide toxicity in cultured mammalian cells. Elucidation of the primary site for radiation-induced division delay. Radiat Res 1977;69:348-358.
[PubMed]
60.
Warters RL, Hofer KG, Harris CR, Smith JM: Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage. Curr Top Radiat Res Q 1978;12:389-407.
[PubMed]
61.
Ward JF: Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals. Radiat Res 1981;86:185-195.
[PubMed]
62.
Goodhead DT: The initial physical damage produced by ionizing radiations. Int J Radiat Biol 1989;56:623-634.
[PubMed]
63.
Olive PL: The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res 1998;150:S42-S51.
[PubMed]
64.
Kam WWY, McNamara AL, Lake V, Banos C, Davies JB, Kuncic Z, et al: Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: a Monte Carlo simulation and quantitative PCR study. Mitochondrion 2013;13:736-742.
[PubMed]
65.
Kam WW-Y, Banati RB: Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013;65:607-619.
[PubMed]
66.
Richardson RB, Harper M: Mitochondrial stress controls the radiosensitivity of the oxygen effect: implications for radiotherapy. Oncotarget 2016;7:21469-21483.
[PubMed]
67.
Yakes FM, Van Houten B: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997;94:514-519.
[PubMed]
68.
Larsen NB, Rasmussen M, Rasmussen LJ: Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 2005;5:89-108.
[PubMed]
69.
Cannino G, Di Liegro CM, Rinaldi AM: Nuclear-mitochondrial interaction. Mitochondrion 2007;7:359-366.
[PubMed]
70.
Leach JK, Van Tuyle G, Lin P, Schmidt-Ullrich R, Mikkelsen RB: Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 2001;61:3894-3901.
[PubMed]
71.
Walsh DWM, Siebenwirth C, Greubel C, Ilicic K, Reindl J, Girst S, et al: Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential. Sci Rep 2017;7:46684.
[PubMed]
72.
Choi NC, Fischman AJ, Niemierko A, Ryu JS, Lynch T, Wain J, et al: Dose-response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. Int J Radiat Oncol 2002;54:1024-1035.
[PubMed]
73.
Sun A, Johansson S, Turesson I, Dau A, Sörensen J: Imaging tumor perfusion and oxidative metabolism in patients with head-and-neck cancer using 1-[11C]-acetate PET during radiotherapy: preliminary results. Int J Radiat Oncol Biol Phys 2012;82:554-560.
[PubMed]
74.
Seyfried TN: Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. New York, John Wiley & Sons, 2012.
75.
Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G: Mitochondria and cancer: past, present, and future. Biomed Res Int 2013;2013:612369.
[PubMed]
76.
Gaude E, Frezza C: Defects in mitochondrial metabolism and cancer. Cancer Metab 2014;2:10.
[PubMed]
77.
Meijer TWH, Kaanders JHAM, Span PN, Bussink J: Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 2012;18:5585-5594.
[PubMed]
78.
Meister A: Selective modification of glutathione metabolism. Science 1983;220:472-477.
[PubMed]
79.
Jansen N, Walach H: The development of tumours under a ketogenic diet in association with the novel tumour marker TKTL1: a case series in general practice. Oncol Lett 2016;11:584-592.
[PubMed]
80.
Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N, et al: Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012;28:1028-1035.
[PubMed]
81.
Schroeder U, Himpe B, Pries R, Vonthein R, Nitsch S, Wollenberg B: Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer. Nutr Cancer 2013;65:843-849.
[PubMed]
82.
Husain Z, Huang Y, Seth P, Sukhatme VP: Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 2014;191:1486-1495.
[PubMed]
83.
Otto C, Klingelhöffer C, Biggermann L, Melkus G, Mörchel P, Jürgens C, et al: Analysis of the metabolism of ketone bodies and lactate by gastrointestinal tumor cells in vitro. Aktuel Ernahrungsmed 2014;39:51-59.
84.
Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, et al: Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2014;2:18.
[PubMed]
85.
Kadochi YUI, Mori S, Fujiwara-Tani R, Luo Y, Nishiguchi Y, Kishi S, et al: Remodeling of energy metabolism by a ketone body and medium-chain fatty acid suppressed the proliferation of CT26 mouse colon cancer cells. Oncol Lett 2017;14:673-680.
[PubMed]
86.
Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, et al: Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget 2015;6:11806-11819.
[PubMed]
87.
Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, et al: Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep 2016;6:19569.
[PubMed]
88.
Quennet V, Yaromina A, Zips D, Rosner A, Walenta S, Baumann M, et al: Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 2006;81:130-135.
[PubMed]
89.
Sattler UGA, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C, et al: Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 2010;94:102-109.
[PubMed]
90.
Mailloux RJ, Harper M-E: Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 2011;51:1106-1115.
[PubMed]
91.
Fine EJ, Miller A, Quadros EV, Sequeira JM, Feinman RD: Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int 2009;9:14.
[PubMed]
92.
Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, et al: Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 2012;4:124ra27.
[PubMed]
93.
D'Aronzo M, Vinciguerra M, Mazza T, Panebianco C, Saracino C, Pereira SP, et al: Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 2015;6:18545-18557.
[PubMed]
94.
Pietrocola F, Pol J, Vacchelli E, Rao S, Enot DP, Baracco EE, et al: Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 2016;30:147-160.
[PubMed]
95.
Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG, Sperl W, Kofler B: Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget 2016;7:17060-17073.
[PubMed]
96.
Qin L, Fan M, Candas D, Jiang G, Papadopoulos S, Tian L, et al: CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair. Cell Rep 2015;13:2056-2063.
[PubMed]
97.
Conklin KA: Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 2004;3:294-300.
[PubMed]
98.
Safdie F, Brandhorst S, Wei M, Wang W, Lee C, Hwang S, et al: Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS One 2012;7:e44603.
[PubMed]
99.
Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, et al: The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 2012;7:e36197.
[PubMed]
100.
Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE, Button AM, et al: Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 2013;19:3905-3913.
[PubMed]
101.
Zahra A, Fath MA, Opat E, Mapuskar KA, Bhatia SK, Ma DC, et al: Consuming a ketogenic diet while receiving radiation and chemotherapy for locally advanced lung cancer and pancreatic cancer: the University of Iowa experience of two phase 1 clinical trials. Radiat Res 2017;187:743-754.
[PubMed]
102.
Saleh AD, Simone BA, Savage J, Sano Y, Jin L, Champ C, et al: Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 2013;12:1955-1963.
[PubMed]
103.
Simone BA, Dan T, Palagani A, Jin L, Han SY, Wright C, et al: Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 2016;15:2265-2274.
[PubMed]
104.
Werner H, Sarfstein R, LeRoith D, Bruchim I: Insulin-like growth factor 1 signaling axis meets p53 genome protection pathways. Front Oncol 2016;6:159.
[PubMed]
105.
Guckenberger M, Klement RJ, Allgäuer M, Appold S, Dieckmann K, Ernst I, et al: Applicability of the linear-quadratic formalism for modeling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer. Radiother Oncol 2013;109:13-20.
[PubMed]
106.
Shuryak I, Carlson DJ, Brown JM, Brenner DJ: High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother Oncol 2015;115:327-334.
[PubMed]
107.
Lindblom E, Antonovic L, Dasu A, Lax I, Wersäll P, Toma-Dasu I: Treatment fractionation for stereotactic radiotherapy of lung tumours: a modelling study of the influence of chronic and acute hypoxia on tumour control probability. Radiat Oncol 2014;9:149.
[PubMed]
108.
Bennett MH, Feldmeier J, Smee R, Milross C: Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev 2012;(4):CD005007.
[PubMed]
109.
Stępień K, Ostrowski RP, Matyja E: Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol 2016;33:101.
[PubMed]
110.
Poff AM, Ward N, Seyfried TN, Arnold P, D'Agostino DP: Non-toxic metabolic management of metastatic cancer in VM mice: novel combination of ketogenic diet, ketone supplementation, and hyperbaric oxygen therapy. PLoS One 2015;10:e0127407.
[PubMed]
111.
İyikesici MS, Slocum AK, Slocum A, Berkarda FB, Kalamian M, Seyfried TN: Efficacy of metabolically supported chemotherapy combined with ketogenic diet, hyperthermia, and hyperbaric oxygen therapy for stage IV triple-negative breast cancer. Cureus 2017;9:e1445.
[PubMed]
112.
Bhatt AN, Chauhan A, Khanna S, Rai Y, Singh S, Soni R, et al: Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer 2015;15:335.
[PubMed]
113.
Liang Y, Liu J, Feng Z: The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 2013;3:9.
[PubMed]
114.
Yogev O, Barker K, Sikka A, Almeida GS, Hallsworth A, Smith LM, et al: p53 loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance. Cancer Res 2016;76:3025-3036.
[PubMed]
115.
Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, et al: Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle 2012;11:4436-4446.
[PubMed]
116.
Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, Longo VD: Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci USA 2008;105:8215-8220.
[PubMed]
117.
Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, Parrella E, et al: Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res 2010;70:1564-1572.
[PubMed]
118.
Lee C, Longo VD: Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 2011;30:3305-3316.
[PubMed]
119.
Kurtak KA: Dietary and nutritional manipulation of the nuclear transcription factors peroxisome proliferator-activated receptor and sterol regulatory element-binding proteins as a tool for reversing the primary diseases of premature death and delaying aging. Rejuvenation Res 2014;17:140-144.
[PubMed]
120.
Kopeina GS, Senichkin VV, Zhivotovsky B: Caloric restriction - a promising anti-cancer approach: from molecular mechanisms to clinical trials. Biochim Biophys Acta 2017;1867:29-41.
[PubMed]
121.
Cullingford TE: The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins Leukot Essent Fatty Acids 2004;70:253-264.
[PubMed]
122.
Eijkelenboom A, Burgering BMT: FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 2013;14:83-97.
[PubMed]
123.
Bae HR, Kim DH, Park MH, Lee B, Kim MJ, Lee EK, et al: β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget 2016;7:66444-66454.
[PubMed]
124.
Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al: Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013;339:211-214.
[PubMed]
125.
Nagao M, Toh R, Irino Y, Mori T, Nakajima H, Hara T, et al: Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes. Biochem Biophys Res Commun 2016;475:322-328.
[PubMed]
126.
Sweeney R, Wilbert J, Menge M, Gibson A, Klement R: PO-0688: implementation of a breast-hold lung gating system for left-sided breast cancer; hurdles and benefits. Radiother Oncol 2015;115:S336-S337.
127.
Woolf EC, Rossi AP, Silva-Nichols HB, Gardner KD, Syed N, Scheck AC: Abstract 1125A: β-Hydroxybutyrate inhibits histone deacetylase activity and radiosensitizes malignant glioma cells. Cancer Res 2017;77:7445.
128.
Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT: Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017;69:305-314.
[PubMed]
129.
Puchalska P, Crawford PA: Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 2017;25:262-284.
[PubMed]
130.
Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al: Fasting and cancer treatment in humans: a case series report. Aging (Albany NY) 2009;1:988-1007.
[PubMed]
131.
de Groot S, Vreeswijk MP, Welters MJ, Gravesteijn G, Boei JJ, Jochems A, et al: The effects of short-term fasting on tolerance to (neo)adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 2015;15:652.
[PubMed]
132.
Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D, Pham H, et al: Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 2016;16:360.
[PubMed]
133.
Raffaghello L, Safdie F, Bianchi G, Dorff T, Fontana L, Longo VD: Fasting and differential chemotherapy protection in patients. Cell Cycle 2010;9:4474-4476.
[PubMed]
134.
Klement RJ: Fasten als therapeutische Ergänzung. InFo Onkol 2016;19:14-16.
135.
Klement RJ: Fasten als Ergänzung zur Chemotherapie. Gynakol Geburtshilfe 2016;21:9.
136.
Klement RJ: Fasten als Nebenwirkungsmanagement? InFo Onkol 2016;19:22-24.
137.
Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, et al: Corticosteroids compromise survival in glioblastoma. Brain 2016;139:1458-1471.
[PubMed]
138.
Klement RJ, Champ CE: Corticosteroids compromise survival in glioblastoma in part through their elevation of blood glucose levels. Brain 2017;140:e16.
[PubMed]
139.
Champ CE, Palmer JD, Volek JS, Werner-Wasik M, Andrews DW, Evans JJ, et al: Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J Neurooncol 2014;117:125-131.
[PubMed]
140.
Klement RJ, Kämmerer U: Can a low carbohydrate/ketogenic diet retard tumor growth? Aktuel Ernahrungsmed 2016;41:95-102.
141.
Huisman SA, Bijman-Lagcher W, Ijzermans JNM, Smits R, de Bruin RWF: Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle 2015;14:2333-2339.
[PubMed]
142.
Huisman SA, de Bruijn P, Ghobadi Moghaddam-Helmantel IM, IJzermans JNM, Wiemer EAC, Mathijssen RHJ, et al: Fasting protects against the side effects of irinotecan treatment but does not affect anti-tumour activity in mice. Br J Pharmacol 2016;173:804-814.
[PubMed]
You do not currently have access to this content.