Introduction: Doxorubicin (DOX), a potent anthracycline, is widely used in cancer therapy, but its effect is limited by doxorubicin-induced cardiotoxicity (DIC). Increasing evidence suggests that DIC is associated with ferroptosis, a cell death characterized by the iron-dependent accumulation of lipid peroxides. Although aerobic exercise is recommended for chemotherapy-related cardiac dysfunction, the extent to which its protective effects against DIC are mediated through the inhibition of ferroptosis remains largely unclear. The aim of this study was to elucidate the mechanism through which aerobic exercise attenuates DIC and provide theoretical support for promoting scientifically guided exercise in patients with DIC. Methods: We conducted in vivo experiments involving 8 weeks of aerobic exercise during and after DOX treatment of C57BL/6J male mice, and in vitro experiments, H9c2 cells were treated with DOX and ferrostatin-1 (Fer-1, a ferroptosis inhibitor). Mice were randomly assigned into four groups: Control (C, n = 6), DOX (D, n = 10), aerobic exercise (E, n = 6) and DOX + aerobic exercise (DE, n = 10). Echocardiography was used to measure left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) to assess cardiac function in mice. ELISA kits were used to quantify serum biomarkers of myocardial injury, including cardiac troponin T (cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP), and lipid peroxidation markers, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Hematoxylin and eosin and Masson’s trichrome were performed to evaluate myocardial structural damage. Fluorescent probes were used to detect ferrous iron (Fe2+), reactive oxygen species (ROS), and lipid peroxides in H9c2 cells. Western blotting was conducted to analyze ferroptosis-related proteins, including glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), acyl-CoA synthetase long-chain family member 4 (ACSL4), transferrin receptor 1 (TfR1), and ferritin heavy chain 1 (FTH1). Results: DOX treatment significantly induced cardiac damage and dysfunction, as evidenced by disrupted myocardial tissue, increased myocardial fibrosis and cTnT levels, and decreased LVEF and LVFS. However, aerobic exercise effectively reduced cardiac structural and functional damage, and improved the rate of survival in mice. Furthermore, DOX-induced ferroptosis in cardiomyocytes both in vitro and in vivo, as marked by increased levels of Fe2+, ROS, and MDA, along with altered protein expression, including reduced FTH1 and SLC7A11 levels and increased ACSL4 levels. In contrast, aerobic exercise significantly mitigated these changes in vivo, and Fer-1 also effectively inhibited these effects in vitro. Conclusion: Collectively, this study demonstrates that aerobic exercise alleviates DIC via the inhibition of ferroptosis.

1.
Zhang
M
,
Ge
Y
,
Xu
S
,
Fang
X
,
Meng
J
,
Yu
L
, et al
.
Nanomicelles co-loading CXCR4 antagonist and doxorubicin combat the refractory acute myeloid leukemia
.
Pharmacol Res
.
2022
;
185
:
106503
.
2.
Giráldez-Pérez
RM
,
Grueso
E
,
Montero-Hidalgo
AJ
,
Luque
RM
,
Carnerero
JM
,
Kuliszewska
E
, et al
.
Gold nanosystems covered with doxorubicin/DNA complexes: a therapeutic target for prostate and liver cancer
.
Int J Mol Sci
.
2022
;
23
(
24
):
15575
.
3.
Sawasdee
N
,
Wattanapanitch
M
,
Thongsin
N
,
Phanthaphol
N
,
Chiawpanit
C
,
Thuwajit
C
, et al
.
Doxorubicin sensitizes breast cancer cells to natural killer cells in connection with increased Fas receptors
.
Int J Mol Med
.
2022
;
49
(
3
):
40
.
4.
Mitry
MA
,
Edwards
JG
.
Doxorubicin induced heart failure: phenotype and molecular mechanisms
.
Int J Cardiol Heart Vasc
.
2016
;
10
:
17
24
.
5.
Lyon
AR
,
López-Fernández
T
,
Couch
LS
,
Asteggiano
R
,
Aznar
MC
,
Bergler-Klein
J
, et al
.
2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)
.
Eur Heart J
.
2022
;
43
(
41
):
4229
361
.
6.
Swain
SM
,
Whaley
FS
,
Ewer
MS
.
Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials
.
Cancer
.
2003
;
97
(
11
):
2869
79
.
7.
Lipshultz
SE
,
Franco
VI
,
Miller
TL
,
Colan
SD
,
Sallan
SE
.
Cardiovascular disease in adult survivors of childhood cancer
.
Annu Rev Med
.
2015
;
66
:
161
76
.
8.
Vo
JB
,
Ramin
C
,
Barac
A
,
Berrington de Gonzalez
A
,
Veiga
L
.
Trends in heart disease mortality among breast cancer survivors in the US, 1975–2017
.
Breast Cancer Res Treat
.
2022
;
192
(
3
):
611
22
.
9.
Christidi
E
,
Brunham
LR
.
Regulated cell death pathways in doxorubicin-induced cardiotoxicity
.
Cell Death Dis
.
2021
;
12
(
4
):
339
.
10.
Li
J
,
Chang
HM
,
Banchs
J
,
Araujo
DM
,
Hassan
SA
,
Wagar
EA
, et al
.
Detection of subclinical cardiotoxicity in sarcoma patients receiving continuous doxorubicin infusion or pre-treatment with dexrazoxane before bolus doxorubicin
.
Cardiooncology
.
2020
;
6
:
1
.
11.
Gyöngyösi
M
,
Lukovic
D
,
Zlabinger
K
,
Spannbauer
A
,
Gugerell
A
,
Pavo
N
, et al
.
Liposomal doxorubicin attenuates cardiotoxicity via induction of interferon-related DNA damage resistance
.
Cardiovasc Res
.
2020
;
116
(
5
):
970
82
.
12.
Prajapati
R
,
Garcia-Garrido
E
,
Somoza
Á
.
Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer
.
Cancers
.
2021
;
13
(
12
):
3011
.
13.
Dallons
M
,
Schepkens
C
,
Dupuis
A
,
Tagliatti
V
,
Colet
JM
.
New insights about doxorubicin-induced toxicity to cardiomyoblast-derived H9C2 cells and dexrazoxane cytoprotective effect: contribution of in vitro (1)H-NMR metabonomics
.
Front Pharmacol
.
2020
;
11
:
79
.
14.
Liu
Y
,
Corrales-Guerrero
S
,
Kuo
JC
,
Robb
R
,
Nagy
G
,
Cui
T
, et al
.
Improved targeting and safety of doxorubicin through a novel albumin binding prodrug approach
.
ACS Omega
.
2024
;
9
(
1
):
977
87
.
15.
Mir
A
,
Badi
Y
,
Bugazia
S
,
Nourelden
AZ
,
Fathallah
AH
,
Ragab
KM
, et al
.
Efficacy and safety of cardioprotective drugs in chemotherapy-induced cardiotoxicity: an updated systematic review & network meta-analysis
.
Cardiooncology
.
2023
;
9
(
1
):
10
.
16.
Martínez-Milla
J
,
Raposeiras-Roubín
S
,
Pascual-Figal
DA
,
Ibáñez
B
.
Role of beta-blockers in cardiovascular disease in 2019
.
Rev Esp Cardiol (Engl Ed)
.
2019
;
72
(
10
):
844
52
.
17.
Chin
BS
,
Langford
NJ
,
Nuttall
SL
,
Gibbs
CR
,
Blann
AD
,
Lip
GY
.
Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure
.
Eur J Heart Fail
.
2003
;
5
(
2
):
171
4
.
18.
Carrasco
R
,
Castillo
RL
,
Gormaz
JG
,
Carrillo
M
,
Thavendiranathan
P
.
Role of oxidative stress in the mechanisms of anthracycline-induced cardiotoxicity: effects of preventive strategies
.
Oxid Med Cell Longev
.
2021
;
2021
:
8863789
.
19.
Herrmann
J
,
Lenihan
D
,
Armenian
S
,
Barac
A
,
Blaes
A
,
Cardinale
D
, et al
.
Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement
.
Eur Heart J
.
2022
;
43
(
4
):
280
99
.
20.
Naaktgeboren
WR
,
Stuiver
MM
,
van Harten
WH
,
Aaronson
NK
,
Scott
JM
,
Sonke
G
, et al
.
Effects of exercise during chemotherapy for breast cancer on long-term cardiovascular toxicity
.
Open Heart
.
2023
;
10
(
2
):
e002464
.
21.
Newman
AB
,
Basen-Engquist
K
,
Gilchrist
SC
,
Nohria
A
,
Kerrigan
D
,
Keteyian
SJ
, et al
.
Exercise and cardio-oncology rehab
.
Curr Treat Options Cardiovasc Med
.
2022
;
24
(
11
):
183
97
.
22.
Hardefeldt
PJ
,
Penninkilampi
R
,
Edirimanne
S
,
Eslick
GD
.
Physical activity and weight loss reduce the risk of breast cancer: a meta-analysis of 139 prospective and retrospective studies
.
Clin Breast Cancer
.
2018
;
18
(
4
):
e601
12
.
23.
Varghese
SS
,
Johnston
WJ
,
Eekhoudt
CR
,
Keats
MR
,
Jassal
DS
,
Grandy
SA
.
Exercise to reduce anthracycline-mediated cardiovascular complications in breast cancer survivors
.
Curr Oncol
.
2021
;
28
(
5
):
4139
56
.
24.
Campbell
KL
,
Winters-Stone
KM
,
Wiskemann
J
,
May
AM
,
Schwartz
AL
,
Courneya
KS
, et al
.
Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable
.
Med Sci Sports Exerc
.
2019
;
51
(
11
):
2375
90
.
25.
Gilchrist
SC
,
Barac
A
,
Ades
PA
,
Alfano
CM
,
Franklin
BA
,
Jones
LW
, et al
.
Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American heart association
.
Circulation
.
2019
;
139
(
21
):
e997
1012
.
26.
Dozic
S
,
Howden
EJ
,
Bell
JR
,
Mellor
KM
,
Delbridge
LMD
,
Weeks
KL
.
Cellular mechanisms mediating exercise-induced protection against cardiotoxic anthracycline cancer therapy
.
Cells
.
2023
;
12
(
9
):
1312
.
27.
Gaytan
SL
,
Lawan
A
,
Chang
J
,
Nurunnabi
M
,
Bajpeyi
S
,
Boyle
JB
, et al
.
The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity
.
Front Physiol
.
2023
;
14
:
1133423
.
28.
Ghignatti
P
,
Nogueira
LJ
,
Lehnen
AM
,
Leguisamo
NM
.
Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis of preclinical studies
.
Sci Rep
.
2021
;
11
(
1
):
6330
.
29.
Wu
X
,
Li
Y
,
Zhang
S
,
Zhou
X
.
Ferroptosis as a novel therapeutic target for cardiovascular disease
.
Theranostics
.
2021
;
11
(
7
):
3052
9
.
30.
Zhai
Z
,
Zou
P
,
Liu
F
,
Xia
Z
,
Li
J
.
Ferroptosis is a potential novel diagnostic and therapeutic target for patients with cardiomyopathy
.
Front Cell Dev Biol
.
2021
;
9
:
649045
.
31.
Dixon
SJ
,
Lemberg
KM
,
Lamprecht
MR
,
Skouta
R
,
Zaitsev
EM
,
Gleason
CE
, et al
.
Ferroptosis: an iron-dependent form of nonapoptotic cell death
.
Cell
.
2012
;
149
(
5
):
1060
72
.
32.
Fang
X
,
Wang
H
,
Han
D
,
Xie
E
,
Yang
X
,
Wei
J
, et al
.
Ferroptosis as a target for protection against cardiomyopathy
.
Proc Natl Acad Sci USA
.
2019
;
116
(
7
):
2672
80
.
33.
Zhang
G
,
Yuan
C
,
Su
X
,
Zhang
J
,
Gokulnath
P
,
Vulugundam
G
, et al
.
Relevance of ferroptosis to cardiotoxicity caused by anthracyclines: mechanisms to target treatments
.
Front Cardiovasc Med
.
2022
;
9
:
896792
.
34.
Bloom
MW
,
Hamo
CE
,
Cardinale
D
,
Ky
B
,
Nohria
A
,
Baer
L
, et al
.
Cancer therapy-related cardiac dysfunction and heart failure: part 1 – definitions, pathophysiology, risk factors, and imaging
.
Circ Heart Fail
.
2016
;
9
(
1
):
e002661
.
35.
Han
X
,
Zhou
Y
,
Liu
W
.
Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy
.
NPJ Precis Oncol
.
2017
;
1
(
1
):
31
.
36.
Lee
Y
,
Kwon
I
,
Jang
Y
,
Cosio-Lima
L
,
Barrington
P
.
Endurance exercise attenuates doxorubicin-induced cardiotoxicity
.
Med Sci Sports Exerc
.
2020
;
52
(
1
):
25
36
.
37.
Wang
W
,
Zhong
X
,
Fang
Z
,
Li
J
,
Li
H
,
Liu
X
, et al
.
Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway
.
Chem Biol Interact
.
2023
;
377
:
110469
.
38.
Zhang
H
,
Pan
J
,
Huang
S
,
Chen
X
,
Chang
ACY
,
Wang
C
, et al
.
Hydrogen sulfide protects cardiomyocytes from doxorubicin-induced ferroptosis through the SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2 activation
.
Redox Biol
.
2024
;
70
:
103066
.
39.
Gomes-Santos
IL
,
Jordão
CP
,
Passos
CS
,
Brum
PC
,
Oliveira
EM
,
Chammas
R
, et al
.
Exercise training preserves myocardial strain and improves exercise tolerance in doxorubicin-induced cardiotoxicity
.
Front Cardiovasc Med
.
2021
;
8
:
605993
.
40.
Wang
HT
,
Yang
WQ
,
Liu
YQ
.
Effects of aerobic exercise on Nrf2/GPX4/Ferroptosis pathway in myocardial injury in high-fat diet mice
.
Zhongguo Ying Yong Sheng Li Xue Za Zhi
.
2022
;
38
(
2
):
143
8
.
41.
Chen
J
,
Zhu
T
,
Yu
D
,
Yan
B
,
Zhang
Y
,
Jin
J
, et al
.
Moderate intensity of treadmill exercise rescues TBI-induced ferroptosis, neurodegeneration, and cognitive impairments via suppressing STING pathway
.
Mol Neurobiol
.
2023
;
60
(
9
):
4872
96
.
42.
Singal
PK
,
Iliskovic
N
.
Doxorubicin-induced cardiomyopathy
.
N Engl J Med
.
1998
;
339
(
13
):
900
5
.
43.
Tadokoro
T
,
Ikeda
M
,
Ide
T
,
Deguchi
H
,
Ikeda
S
,
Okabe
K
, et al
.
Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity
.
JCI Insight
.
2020
;
5
(
9
):
e132747
.
44.
Valenzuela
PL
,
Ruilope
LM
,
Santos-Lozano
A
,
Wilhelm
M
,
Kränkel
N
,
Fiuza-Luces
C
, et al
.
Exercise benefits in cardiovascular diseases: from mechanisms to clinical implementation
.
Eur Heart J
.
2023
;
44
(
21
):
1874
89
.
45.
Naaktgeboren
WR
,
Binyam
D
,
Stuiver
MM
,
Aaronson
NK
,
Teske
AJ
,
van Harten
WH
, et al
.
Efficacy of physical exercise to offset anthracycline-induced cardiotoxicity: a systematic review and meta-analysis of clinical and preclinical studies
.
J Am Heart Assoc
.
2021
;
10
(
17
):
e021580
.
46.
Sequeira
CM
,
Martins
MA
,
Alves
R
,
Nascimento
ALR
,
Botti
G
,
Rocha
VN
, et al
.
Aerobic exercise training attenuates doxorubicin-induced ultrastructural changes in rat ventricular myocytes
.
Life Sci
.
2021
;
264
:
118698
.
47.
Wang
L
,
Qiao
Y
,
Yu
J
,
Wang
Q
,
Wu
X
,
Cao
Q
, et al
.
Endurance exercise preconditioning alleviates ferroptosis induced by doxorubicin-induced cardiotoxicity through mitochondrial superoxide-dependent AMPKα2 activation
.
Redox Biol
.
2024
;
70
:
103079
.
48.
Ghignatti
P
,
Russo
MKB
,
Becker
T
,
Guecheva
TN
,
Teixeira
LV
,
Lehnen
AM
, et al
.
Preventive aerobic training preserves sympathovagal function and improves DNA repair capacity of peripheral blood mononuclear cells in rats with cardiomyopathy
.
Sci Rep
.
2022
;
12
(
1
):
6422
.
49.
Willis
MS
,
Parry
TL
,
Brown
DI
,
Mota
RI
,
Huang
W
,
Beak
JY
, et al
.
Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1
.
Circ Heart Fail
.
2019
;
12
(
3
):
e005234
.
50.
Ye
S
,
Su
L
,
Shan
P
,
Ye
B
,
Wu
S
,
Liang
G
, et al
.
LCZ696 attenuated doxorubicin-induced chronic cardiomyopathy through the TLR2-MyD88 complex formation
.
Front Cell Dev Biol
.
2021
;
9
:
654051
.
51.
Cardinale
D
,
Iacopo
F
,
Cipolla
CM
.
Cardiotoxicity of anthracyclines
.
Front Cardiovasc Med
.
2020
;
7
:
26
.
52.
Lv
H
,
Tan
R
,
Liao
J
,
Hao
Z
,
Yang
X
,
Liu
Y
, et al
.
Doxorubicin contributes to thrombus formation and vascular injury by interfering with platelet function
.
Am J Physiol Heart Circ Physiol
.
2020
;
319
(
1
):
H133
43
.
53.
Kilickap
S
,
Barista
I
,
Akgul
E
,
Aytemir
K
,
Aksoyek
S
,
Aksoy
S
, et al
.
cTnT can be a useful marker for early detection of anthracycline cardiotoxicity
.
Ann Oncol
.
2005
;
16
(
5
):
798
804
.
54.
Authors/Task Force Members
;
McDonagh
TA
,
Metra
M
,
Adamo
M
,
Gardner
RS
,
Baumbach
A
, et al
.
2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC
.
Eur J Heart Fail
.
2024
;
26
(
1
):
5
17
.
55.
D’Ascenzi
F
,
Anselmi
F
,
Fiorentini
C
,
Mannucci
R
,
Bonifazi
M
,
Mondillo
S
.
The benefits of exercise in cancer patients and the criteria for exercise prescription in cardio-oncology
.
Eur J Prev Cardiol
.
2021
;
28
(
7
):
725
35
.
56.
Marques-Aleixo
I
,
Santos-Alves
E
,
Torrella
JR
,
Oliveira
PJ
,
Magalhães
J
,
Ascensão
A
.
Exercise and doxorubicin treatment modulate cardiac mitochondrial quality control signaling
.
Cardiovasc Toxicol
.
2018
;
18
(
1
):
43
55
.
57.
van der Schoot
GGF
,
Ormel
HL
,
Westerink
NDL
,
May
AM
,
Elias
SG
,
Hummel
YM
, et al
.
Optimal timing of a physical exercise intervention to improve cardiorespiratory fitness: during or after chemotherapy
.
JACC CardioOncol
.
2022
;
4
(
4
):
491
503
.
58.
Scott
JM
,
Lee
J
,
Herndon
JE
,
Michalski
MG
,
Lee
CP
,
O’Brien
KA
, et al
.
Timing of exercise therapy when initiating adjuvant chemotherapy for breast cancer: a randomized trial
.
Eur Heart J
.
2023
;
44
(
46
):
4878
89
.
59.
Peel
AB
,
Barlow
CE
,
Leonard
D
,
DeFina
LF
,
Jones
LW
,
Lakoski
SG
.
Cardiorespiratory fitness in survivors of cervical, endometrial, and ovarian cancers: the Cooper Center Longitudinal Study
.
Gynecol Oncol
.
2015
;
138
(
2
):
394
7
.
60.
Mair
J
,
Lindahl
B
,
Hammarsten
O
,
Müller
C
,
Giannitsis
E
,
Huber
K
, et al
.
How is cardiac troponin released from injured myocardium
.
Eur Heart J Acute Cardiovasc Care
.
2018
;
7
(
6
):
553
60
.
61.
Marshall
L
,
Lee
KK
,
Stewart
SD
,
Wild
A
,
Fujisawa
T
,
Ferry
AV
, et al
.
Effect of exercise intensity and duration on cardiac troponin release
.
Circulation
.
2020
;
141
(
1
):
83
5
.
62.
Wang
XY
,
Zhang
F
,
Zhang
C
,
Zheng
LR
,
Yang
J
.
The biomarkers for acute myocardial infarction and heart failure
.
BioMed Res Int
.
2020
;
2020
:
2018035
.
63.
Dixon
SJ
,
Olzmann
JA
.
The cell biology of ferroptosis
.
Nat Rev Mol Cell Biol
.
2024
;
25
(
6
):
424
42
.
64.
Skouta
R
,
Dixon
SJ
,
Wang
J
,
Dunn
DE
,
Orman
M
,
Shimada
K
, et al
.
Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models
.
J Am Chem Soc
.
2014
;
136
(
12
):
4551
6
.
65.
Luan
Y
,
Yang
Y
,
Luan
Y
,
Liu
H
,
Xing
H
,
Pei
J
, et al
.
Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases
.
J Zhejiang Univ Sci B
.
2024
;
25
(
1
):
1
22
.
66.
Liu
Y
,
Zeng
L
,
Yang
Y
,
Chen
C
,
Wang
D
,
Wang
H
.
Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition
.
Cell Death Dis
.
2020
;
11
(
9
):
756
.
67.
Kitakata
H
,
Endo
J
,
Ikura
H
,
Moriyama
H
,
Shirakawa
K
,
Katsumata
Y
, et al
.
Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. Ferroptosis
.
Int J Mol Sci
.
2022
;
23
(
3
):
1414
.
68.
Zilka
O
,
Shah
R
,
Li
B
,
Friedmann Angeli
JP
,
Griesser
M
,
Conrad
M
, et al
.
On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death
.
ACS Cent Sci
.
2017
;
3
(
3
):
232
43
.
69.
Pham
CG
,
Bubici
C
,
Zazzeroni
F
,
Papa
S
,
Jones
J
,
Alvarez
K
, et al
.
Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species
.
Cell
.
2004
;
119
(
4
):
529
42
.
70.
Yang
WS
,
Kim
KJ
,
Gaschler
MM
,
Patel
M
,
Shchepinov
MS
,
Stockwell
BR
.
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
.
Proc Natl Acad Sci USA
.
2016
;
113
(
34
):
E4966
75
.
71.
Shintoku
R
,
Takigawa
Y
,
Yamada
K
,
Kubota
C
,
Yoshimoto
Y
,
Takeuchi
T
, et al
.
Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3
.
Cancer Sci
.
2017
;
108
(
11
):
2187
94
.
72.
Ding
K
,
Liu
C
,
Li
L
,
Yang
M
,
Jiang
N
,
Luo
S
, et al
.
Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism
.
Chin Med J Engl
.
2023
;
136
(
21
):
2521
37
.
73.
Liu
J
,
Liu
H
,
Deng
L
,
Wang
T
,
Li
L
,
Chen
Y
, et al
.
Protective role of dioscin against doxorubicin-induced chronic cardiotoxicity: insights from Nrf2-GPX4 axis-mediated cardiac ferroptosis
.
Biomolecules
.
2024
;
14
(
4
):
422
.
74.
Liao
P
,
Wang
W
,
Wang
W
,
Kryczek
I
,
Li
X
,
Bian
Y
, et al
.
CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4
.
Cancer Cell
.
2022
;
40
(
4
):
365
78.e6
.
75.
Li
W
,
Li
W
,
Leng
Y
,
Xiong
Y
,
Xia
Z
.
Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress
.
DNA Cell Biol
.
2020
;
39
(
2
):
210
25
.
76.
Zheng
J
,
Conrad
M
.
The metabolic underpinnings of ferroptosis
.
Cell Metab
.
2020
;
32
(
6
):
920
37
.
77.
Li
FJ
,
Long
HZ
,
Zhou
ZW
,
Luo
HY
,
Xu
SG
,
Gao
LC
.
System X(c) (-)/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy
.
Front Pharmacol
.
2022
;
13
:
910292
.
78.
Tsubouchi
K
,
Araya
J
,
Yoshida
M
,
Sakamoto
T
,
Koumura
T
,
Minagawa
S
, et al
.
Involvement of GPx4-regulated lipid peroxidation in idiopathic pulmonary fibrosis pathogenesis
.
J Immunol
.
2019
;
203
(
8
):
2076
87
.
79.
Yang
L
,
Guan
J
,
Luo
S
,
Yan
J
,
Chen
D
,
Zhang
X
, et al
.
Angiotensin IV ameliorates doxorubicin-induced cardiotoxicity by increasing glutathione peroxidase 4 and alleviating ferroptosis
.
Toxicol Appl Pharmacol
.
2023
;
479
:
116713
.
80.
Li
D
,
Liu
X
,
Pi
W
,
Zhang
Y
,
Yu
L
,
Xu
C
, et al
.
Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation
.
Front Pharmacol
.
2021
;
12
:
808480
.
81.
Liu
T
,
Cui
Y
,
Dong
S
,
Kong
X
,
Xu
X
,
Wang
Y
, et al
.
Treadmill training reduces cerebral ischemia-reperfusion injury by inhibiting ferroptosis through activation of SLC7A11/GPX4
.
Oxid Med Cell Longev
.
2022
;
2022
:
8693664
.
You do not currently have access to this content.