Introduction: High-dose methotrexate (MTX) is used to treat pediatric acute lymphoblastic leukemia (ALL). The drug has a low therapeutic index and a highly interindividual variability in systemic exposure. These characteristics necessitate dose adjustments and therapeutic drug monitoring protocols, while population pharmacokinetic (POP/PK) models may enable more precise drug dosing. Therefore, we assessed the performance of external POP/PK models in ALL children receiving high-dose MTX. Methods: We retrospectively harvested clinical and laboratory data from ALL children during their first two cycles of chemotherapy. A POP/PK model was elaborated using the Monolix suite 2024R1. External models were selected from PUBMED based on strict inclusion/exclusion criteria, and their fit to the actual data was assessed by calculating bias (percentage prediction error [PE%]) and precision (percentage root mean squared error [RMSE%]). Results: Thirty-seven ALL children participated in the study (18 males, median age 5.1 years, range 1.7–15.2 years), and six external POP/PK models were chosen. Except for one model (median PE% value, −97.45%), all models exhibited acceptable bias (median PE% values, −4.17%–2.67%), despite none of them demonstrating good precision (median RMSE% values, 89.19%–120.40%). Conclusion: External models should be accurately evaluated before they are implemented in clinical practice, even when patients share very similar characteristics.

1.
Kaatsch
P
.
Epidemiology of childhood cancer
.
Cancer Treat Rev
.
2010
;
36
(
4
):
277
85
.
2.
Redaelli
A
,
Laskin
BL
,
Stephens
JM
,
Botteman
MF
,
Pashos
CL
.
A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL)
.
Eur J Cancer Care
.
2005
;
14
(
1
):
53
62
.
3.
Holford
N
,
Heo
YA
,
Anderson
B
.
A pharmacokinetic standard for babies and adults
.
J Pharm Sci
.
2013
;
102
(
9
):
2941
52
.
4.
Chen
AR
,
Wang
YM
,
Lin
M
,
Kuo
DJ
.
High-dose methotrexate in pediatric acute lymphoblastic leukemia: predictors of delayed clearance and the effect of increased hydration rate on methotrexate clearance
.
Cureus
.
2020
;
12
(
6
):
e8674
.
5.
Howard
SC
,
McCormick
J
,
Pui
CH
,
Buddington
RK
,
Harvey
RD
.
Preventing and managing toxicities of high-dose methotrexate
.
Oncologist
.
2016
;
21
(
12
):
1471
82
.
6.
Tyson
RJ
,
Park
CC
,
Powell
JR
,
Patterson
JH
,
Weiner
D
,
Watkins
PB
, et al
.
Precision dosing priority criteria: drug, disease, and patient population variables
.
Front Pharmacol
.
2020
;
11
:
420
.
7.
Darwich
AS
,
Ogungbenr
K
,
Hatley
OJ
,
Rostami-Hodjegan
A
.
Role of pharmacokinetic modeling and simulation in precision dosing of anticancer drugs
.
Transl Cancer Res
.
2017
;
6
(
S10
):
S1512
29
.
8.
Cheng
Y
,
Zhang
Y
,
Zhang
Y
,
Liu
M
,
Zhao
L
.
Population pharmacokinetic analyses of methotrexate in pediatric patients: a systematic review
.
Eur J Clin Pharmacol
.
2024
;
80
(
7
):
965
82
.
9.
Maximova
N
,
Nisticò
D
,
Luci
G
,
Simeone
R
,
Piscianz
E
,
Segat
L
, et al
.
Population pharmacokinetics of intravenous acyclovir in oncologic pediatric patients
.
Front Pharmacol
.
2022
;
13
:
865871
.
10.
Bouquié
R
,
Grégoire
M
,
Hernando
H
,
Azoulay
C
,
Dailly
E
,
Monteil-Ganière
C
, et al
.
Evaluation of a methotrexate chemiluminescent microparticle immunoassay: comparison to fluorescence polarization immunoassay and liquid chromatography–tandem mass spectrometry
.
Am J Clin Pathol
.
2016
;
146
(
1
):
119
24
.
11.
Liappis
N
.
Bestimmung der Methotrexatkonzentration im Serum mit dem Fluoreszenz-Polarisations-lmmunoassay (FPIA)-Vergleich mit dem Enzymimmunoassay (EMIT)
.
Klin Padiatr
.
1986
;
198
(
01
):
33
6
.
12.
Guo
T
,
Van Hest
RM
,
Roggeveen
LF
,
Fleuren
LM
,
Thoral
PJ
,
Bosman
RJ
, et al
.
External evaluation of population pharmacokinetic models of vancomycin in large cohorts of intensive care unit patients
.
Antimicrob Agents Chemother
.
2019
;
63
(
5
):
e0254318
.
13.
Schatz
LM
,
Brinkmann
A
,
Röhr
A
,
Frey
O
,
Greppmair
S
,
Weinelt
F
, et al
.
Systematic evaluation of pharmacokinetic models for model-informed precision dosing of meropenem in critically ill patients undergoing continuous renal replacement therapy
.
Antimicrob Agents Chemother
.
2023
;
67
(
5
):
e0010423
23
,
14.
Plard
C
,
Bressolle
F
,
Fakhoury
M
,
Zhang
D
,
Yacouben
K
,
Rieutord
A
, et al
.
A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia
.
Cancer Chemother Pharmacol
.
2007
;
60
(
4
):
609
20
.
15.
Gao
X
,
Qian
XW
,
Zhu
XH
,
Yu
Y
,
Miao
H
,
Meng
JH
, et al
.
Population pharmacokinetics of high-dose methotrexate in Chinese pediatric patients with acute lymphoblastic leukemia
.
Front Pharmacol
.
2021
;
12
:
701452
.
16.
Odoul
F
,
Le Guellec
C
,
Lamagnère
J
,
Breilh
D
,
Saux
M
,
Paintaud
G
, et al
.
Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach
.
Fundam Clin Pharmacol
.
1999
;
13
(
5
):
595
604
.
17.
Jönsson
P
,
Skärby
T
,
Heldrup
J
,
Schrøder
H
,
Höglund
P
.
High dose methotrexate treatment in children with acute lymphoblastic leukaemia may be optimised by a weight‐based dose calculation
.
Pediatr Blood Cancer
.
2011
;
57
(
1
):
41
6
.
18.
Hui
KH
,
Chu
HM
,
Fong
PS
,
Cheng
WTF
,
Lam
TN
.
Population pharmacokinetic study and individual dose adjustments of high‐dose methotrexate in Chinese pediatric patients with acute lymphoblastic leukemia or osteosarcoma
.
J Clin Pharmacol
.
2019
;
59
(
4
):
566
77
.
19.
Medellin-Garibay
SE
,
Hernández-Villa
N
,
Correa-González
LC
,
Morales-Barragán
MN
,
Valero-Rivera
KP
,
Reséndiz-Galván
JE
, et al
.
Population pharmacokinetics of methotrexate in Mexican pediatric patients with acute lymphoblastic leukemia
.
Cancer Chemother Pharmacol
.
2020
;
85
(
1
):
21
31
.
20.
Kielbowski
K
,
Rosik
J
,
Bakinowska
E
,
Gromowska
E
,
Ustianowski
Ł
,
Szostak
B
, et al
.
The use of glucarpidase as a rescue therapy for high dose methotrexate toxicity - a review of pharmacological and clinical data
.
Expert Opin Drug Metab Toxicol
.
2023
;
19
(
11
):
741
50
.
21.
Jiang
R
,
Mei
S
,
Zhao
Z
.
Leucovorin (folinic acid) rescue for high‐dose methotrexate: a review
.
J Clin Pharm Ther
.
2022
;
47
(
9
):
1452
60
.
22.
Liao
C
,
Nie
J
,
Xu
XJ
,
Zhang
JY
,
Xu
WQ
,
Song
H
, et al
.
The effect of the plasma methotrexate concentration during high-dose methotrexate therapy in childhood acute lymphoblastic leukemia
.
Leuk Lymphoma
.
2024
;
65
(
1
):
91
9
.
23.
Rahmayanti
SU
,
Amalia
R
,
Rusdiana
T
.
Systematic review: genetic polymorphisms in the pharmacokinetics of high-dose methotrexate in pediatric acute lymphoblastic leukemia patients
.
Cancer Chemother Pharmacol
.
2024
;
94
(
2
):
141
55
.
24.
Wu
Q
,
Zhou
Y
,
Fan
X
,
Ma
H
,
Gu
W
,
Sun
F
.
Evaluation of nine formulas for estimating the body surface area of children with hematological malignancies
.
Front Pediatr
.
2022
;
10
:
989049
.
25.
Levêque
D
,
Santucci
R
,
Gourieux
B
,
Herbrecht
R
.
Pharmacokinetic drug–drug interactions with methotrexate in oncology
.
Expert Rev Clin Pharmacol
.
2011
;
4
(
6
):
743
50
.
26.
van der Pol
KH
,
Nijenhuis
M
,
Soree
B
,
de Boer-Veger
NJ
,
Buunk
AM
,
Guchelaar
HJ
, et al
.
Dutch pharmacogenetics working group guideline for the gene-drug interaction of ABCG2, HLA-B and Allopurinol, and MTHFR, folic acid and methotrexate
.
Eur J Hum Genet
.
2024
;
32
(
2
):
155
62
.
27.
Yang
Y
,
Liu
Z
,
Chen
J
,
Wang
X
,
Jiao
Z
,
Wang
Z
.
Factors influencing methotrexate pharmacokinetics highlight the need for individualized dose adjustment: a systematic review
.
Eur J Clin Pharmacol
.
2024
;
80
(
1
):
11
37
.
You do not currently have access to this content.