Introduction: This study investigates the efficacy of fucoidan combination with antibiotics, against single-species biofilms and mixed-species, individual planktonic, and coculture planktonic conditions of Methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii by time-kill curve analysis. Materials and Methods: Fucoidan, a sulfated polysaccharide, was purchased from Sigma-Aldrich, USA. Clinical isolates of MRSA and A. baumannii from diabetic foot ulcers (DFUs) were used, and single-species biofilms and mixed-species biofilms were developed to assess susceptibility to the treatments using MIC, MBC, minimum biofilm inhibitory concentration, minimum biofilm eradication concentration, and time-kill kinetics assays. Cytotoxicity was assessed using MTT assays on human skin fibroblast cells (HSF-PI 16). Results: The study determined the geometric mean MIC and MBC values for gentamicin, imipenem, and fucoidan in MRSA and A. baumannii cultures, both individually and in co-cultures. The MIC and MBC values were significantly lower under co-culture conditions, indicating enhanced antimicrobial efficacy. Synergy between fucoidan, gentamicin, and imipenem was confirmed through time-kill assays, which showed complete inhibition of bacterial growth and effective biofilm eradication, particularly in mixed-species biofilms. Fucoidan demonstrated low cytotoxicity at optimal concentrations, highlighting their potential as a therapeutic strategy against biofilm-associated infections in DFUs. Conclusion: The study concludes that fucoidan, in combination with gentamicin and imipenem, effectively disrupts mixed-species biofilms of MRSA and A. baumannii, suggesting fucoidan-based therapies could improve outcomes for DFU patients, warranting further clinical investigation.

1.
Ojo
OA
,
Ibrahim
HS
,
Rotimi
DE
,
Ogunlakin
AD
,
Ojo
AB
.
Diabetes mellitus: from molecular mechanism to pathophysiology and pharmacology
.
Med Novel Technology Devices
.
2023
;
19
:
100247
.
2.
Moore
Z
,
Avsar
P
,
Wilson
P
,
Mairghani
M
,
O’Connor
T
,
Nugent
L
, et al
.
Diabetic foot ulcers: treatment overview and cost considerations
.
J Wound Care
.
2021
;
30
(
10
):
786
91
.
3.
Baig
MS
,
Banu
A
,
Zehravi
M
,
Rana
R
,
Burle
SS
,
Khan
SL
, et al
.
An overview of diabetic foot ulcers and associated problems with special emphasis on treatments with antimicrobials
.
Life
.
2022
;
12
(
7
):
1054
.
4.
Du
F
,
Ma
J
,
Gong
H
,
Bista
R
,
Zha
P
,
Ren
Y
, et al
.
Microbial infection and antibiotic susceptibility of diabetic foot ulcer in China: literature review
.
Front Endocrinol
.
2022
;
13
:
881659
.
5.
Zhou
S
,
Hu
X
,
Wang
Y
,
Fei
W
,
Sheng
Y
,
Que
H
.
The global prevalence of methicillin-resistant Staphylococcus aureus in patients with diabetic foot ulcers: a systematic review and meta-analysis
.
Diabetes Metab Syndr Obes
.
2024
;
17
:
563
74
.
6.
Cheung
GY
,
Bae
JS
,
Otto
M
.
Pathogenicity and virulence of Staphylococcus aureus
.
Virulence
.
2021
;
12
(
1
):
547
69
.
7.
Nazari
M
,
Azizi
O
,
Solgi
H
,
Fereshteh
S
,
Shokouhi
S
,
Badmasti
F
.
Emergence of carbapenem resistant Acinetobacter baumannii clonal complexes CC2 and CC10 among fecal carriages in an educational hospital
.
Int J Environ Health Res
.
2022
;
32
(
7
):
1478
88
.
8.
Ogbonna
O
,
Onuoha
S
,
David
I
,
Onwa
C
,
Eromonsele
B
,
Ogbu
O
.
Prevalence and phenotypic characteristics of Acinetobacter baumannii isolated from critically ill patients in two healthcare facilities in Ebonyi State, Nigeria
.
Afr J Clin Exp Microbiol
.
2023
;
24
(
4
):
408
14
.
9.
Pouget
C
,
Dunyach-Remy
C
,
Pantel
A
,
Schuldiner
S
,
Sotto
A
,
Lavigne
J-P
.
Biofilms in diabetic foot ulcers: significance and clinical relevance
.
Microorganisms
.
2020
;
8
(
10
):
1580
.
10.
Yadav
MK
,
Vidal
JE
,
Song
J-J
.
Microbial biofilms on medical indwelling devices
. In:
New and future developments in microbial biotechnology and bioengineering: microbial biofilms
.
Elsevier
;
2020
; p.
15
28
.
11.
Nataraj
BH
,
Mallappa
RH
.
Antibiotic resistance crisis: an update on antagonistic interactions between probiotics and methicillin-resistant Staphylococcus aureus (MRSA)
.
Curr Microbiol
.
2021
;
78
(
6
):
2194
211
.
12.
Anju
V
,
Busi
S
,
Imchen
M
,
Kumavath
R
,
Mohan
MS
,
Salim
SA
, et al
.
Polymicrobial infections and biofilms: clinical significance and eradication strategies
.
Antibiotics
.
2022
;
11
(
12
):
1731
.
13.
Pancu
DF
,
Scurtu
A
,
Macasoi
IG
,
Marti
D
,
Mioc
M
,
Soica
C
, et al
.
Antibiotics: conventional therapy and natural compounds with antibacterial activity—a pharmaco-toxicological screening
.
Antibiotics
.
2021
;
10
(
4
):
401
.
14.
Pompilio
A
,
Scocchi
M
,
Mangoni
ML
,
Shirooie
S
,
Serio
A
,
Ferreira Garcia da Costa
Y
, et al
.
Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms
.
Crit Rev Microbiol
.
2023
;
49
(
1
):
117
49
.
15.
Álvarez-Martínez
FJ
,
Barrajón-Catalán
E
,
Micol
V
.
Tackling antibiotic resistance with compounds of natural origin: a comprehensive review
.
Biomedicines
.
2020
;
8
(
10
):
405
.
16.
Raju
P
,
Natarajan
S
.
Anticancer, anti-biofilm and antimicrobial activity of fucoidan-loaded zeolitic imidazole framework fabricated by one-pot synthesis method
.
Appl Nanosci
.
2023
;
13
(
3
):
1919
37
.
17.
Behzadnia
A
,
Moosavi-Nasab
M
,
Oliyaei
N
.
Anti-biofilm activity of marine algae-derived bioactive compounds
.
Front Microbiol
.
2024
;
15
:
1270174
.
18.
Bennett
PM
.
Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria
.
Br J Pharmacol
.
2008
;
153
(
Suppl 1
):
S347
57
.
19.
Fitzgerald
JB
,
Schoeberl
B
,
Nielsen
UB
,
Sorger
PK
.
Systems biology and combination therapy in the quest for clinical efficacy
.
Nat Chem Biol
.
2006
;
2
(
9
):
458
66
.
20.
Nazari
M
,
Taheri
M
,
Nouri
F
,
Bahmanzadeh
M
,
Alikhani
MY
.
The antimicrobial and antibiofilm effects of gentamicin, imipenem, and fucoidan combinations against dual-species biofilms of Staphylococcus aureus and Acinetobacter baumannii isolated from diabetic foot ulcers
.
Ann Clin Microbiol Antimicrob
.
2024
;
23
(
1
):
101
.
21.
Shams Khozani
R
,
Shahbazzadeh
D
,
Harzandi
N
,
Feizabadi
MM
,
Pooshang Bagheri
K
.
Kinetics study of antimicrobial peptide, melittin, in simultaneous biofilm degradation and eradication of potent biofilm producing MDR Pseudomonas aeruginosa isolates
.
Int J Pept Res Ther
.
2019
;
25
(
1
):
329
38
.
22.
CLSI
.
CLSI publishes M100 performance standards for antimicrobial susceptibility testing
. 31st ed.
Clinical and Laboratory Standards Institute
;
2021
.
23.
Bardbari
AM
,
Arabestani
MR
,
Karami
M
,
Keramat
F
,
Aghazadeh
H
,
Alikhani
MY
, et al
.
Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii
.
Eur J Clin Microbiol Infect Dis
.
2018
;
37
(
3
):
443
54
.
24.
Mirzaei
R
,
Alikhani
MY
,
Arciola
CR
,
Sedighi
I
,
Yousefimashouf
R
,
Bagheri
KP
.
Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis
.
Biomed Pharmacother
.
2022
;
147
:
112670
.
25.
Birhanu
BT
,
Lee
EB
,
Lee
SJ
,
Park
SC
.
Targeting Salmonella typhimurium invasion and intracellular survival using pyrogallol
.
Front Microbiol
.
2021
;
12
:
631426
.
26.
Pillai
S
,
Moellering
R
,
Eliopoulos
G
,
Lorian
V
.
Antibiotics in laboratory medicine
. In:
Antibiotics in laboratory medicine
. 5th ed.
Baltimore, MD
:
Lippincott Williams & Wilkins
;
2005
; p.
365
440
.
27.
Barber
KE
,
Werth
BJ
,
McRoberts
JP
,
Rybak
MJ
.
A novel approach utilizing biofilm time-kill curves to assess the bactericidal activity of ceftaroline combinations against biofilm-producing methicillin-resistant Staphylococcus aureus
.
Antimicrob Agents Chemother
.
2014
;
58
(
5
):
2989
92
.
28.
Elizondo-Gonzalez
R
,
Cruz-Suarez
LE
,
Ricque-Marie
D
,
Mendoza-Gamboa
E
,
Rodriguez-Padilla
C
,
Trejo-Avila
LM
.
In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus
.
Virol J
.
2012
;
9
:
307
9
.
29.
Odds
FC
.
Synergy, antagonism, and what the chequerboard puts between them
.
Oxford University Press
;
2003
; p.
1
.
30.
Domingues
MM
,
Felício
MR
,
Gonçalves
S
.
Antimicrobial peptides: effect on bacterial cells
.
Methods Mol Biol
.
2019
;
1886
:
233
42
.
31.
Sionov
RV
,
Steinberg
D
.
Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria
.
Microorganisms
.
2022
;
10
(
6
):
1239
.
32.
Sharma
S
,
Mohler
J
,
Mahajan
SD
,
Schwartz
SA
,
Bruggemann
L
,
Aalinkeel
R
.
Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment
.
Microorganisms
.
2023
;
11
(
6
):
1614
.
33.
Tipton
CD
,
Mathew
ME
,
Wolcott
RA
,
Wolcott
RD
,
Kingston
T
,
Phillips
CD
.
Temporal dynamics of relative abundances and bacterial succession in chronic wound communities
.
Wound Repair Regen
.
2017
;
25
(
4
):
673
9
.
34.
Orazi
G
,
Ruoff
KL
,
O’Toole
GA
.
Pseudomonas aeruginosa increases the sensitivity of biofilm-grown Staphylococcus aureus to membrane-targeting antiseptics and antibiotics
.
mBio
.
2019
;
10
(
4
):
e01501-19
.
35.
Trizna
EY
,
Yarullina
MN
,
Baidamshina
DR
,
Mironova
AV
,
Akhatova
FS
,
Rozhina
EV
, et al
.
Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus-Pseudomonas aeruginosa dual-species biofilm
.
Sci Rep
.
2020
;
10
(
1
):
14849
.
36.
Lee
K-Y
,
Jeong
M-R
,
Choi
S-M
,
Na
S-S
,
Cha
J-D
.
Synergistic effect of fucoidan with antibiotics against oral pathogenic bacteria
.
Arch Oral Biol
.
2013
;
58
(
5
):
482
92
.
37.
Choi
S-M
,
Jang
E-J
,
Cha
J-D
.
Synergistic effect between fucoidan and antibiotics against clinic methicillin-resistant Staphylococcus aureus synergistic effect between fucoidan and antibiotics against clinic methicillin-resistant Staphylococcus aureus
.
Adv Biosci Biotechnol
.
2015
;
6
(
04
):
275
85
.
38.
Srivastava
P
,
Sondak
T
,
Sivashanmugam
K
,
Kim
K
.
A review of immunomodulatory reprogramming by probiotics in combating chronic and acute diabetic foot ulcers (DFUs)
.
Pharmaceutics
.
2022
;
14
(
11
):
2436
.
39.
Monack
DM
,
Mueller
A
,
Falkow
S
.
Persistent bacterial infections: the interface of the pathogen and the host immune system
.
Nat Rev Microbiol
.
2004
;
2
(
9
):
747
65
.
40.
Smith
NM
,
Ang
A
,
Tan
F
,
Macias
K
,
James
S
,
Sidhu
J
, et al
.
Interaction of Staphylococcus aureus and acinetobacter baumannii during in vitro β-lactam exposure
.
Antimicrob Agents Chemother
.
2021
;
65
(
4
):
e02414-20
.
41.
Mitosch
K
,
Bollenbach
T
.
Bacterial responses to antibiotics and their combinations
.
Environ Microbiol Rep
.
2014
;
6
(
6
):
545
57
.
42.
Tong
C
,
Honda
K
,
Derek
C
.
A review on microalgal-bacterial Co-culture: the multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production
.
Environ Res
.
2023
;
228
:
115872
.
43.
Zhao
X
,
Yu
Z
,
Ding
T
.
Quorum-sensing regulation of antimicrobial resistance in bacteria
.
Microorganisms
.
2020
;
8
(
3
):
425
.
44.
Jiang
B
,
Wu
C
,
Liang
Y
,
Li
X
,
Li
J
,
Song
G
.
Bacillus Co-culture inhibits quorum sensing in Pseudomonas aeruginosa
.
Curr Microbiol
.
2023
;
80
(
4
):
123
.
45.
Rodloff
A
,
Goldstein
E
,
Torres
A
.
Two decades of imipenem therapy
.
J Antimicrob Chemother
.
2006
;
58
(
5
):
916
29
.
46.
Tabassum
N
,
Khan
F
,
Kang
M-G
,
Jo
D-M
,
Cho
K-J
,
Kim
Y-M
.
Inhibition of polymicrobial biofilms of Candida albicans–Staphylococcus aureus/Streptococcus mutans by fucoidan–gold nanoparticles
.
Mar Drugs
.
2023
;
21
(
2
):
123
.
47.
Roy
S
,
Elgharably
H
,
Sinha
M
,
Ganesh
K
,
Chaney
S
,
Mann
E
, et al
.
Mixed‐species biofilm compromises wound healing by disrupting epidermal barrier function
.
J Pathol
.
2014
;
233
(
4
):
331
43
.
48.
Mottola
C
.
Virulence characterization and antimicrobial resistance of major bacterial genera from diabetic foot infections
.
Portugal
:
Universidade de Lisboa
;
2017
.
49.
Afonso
AC
,
Oliveira
D
,
Saavedra
MJ
,
Borges
A
,
Simões
M
.
Biofilms in diabetic foot ulcers: impact, risk factors and control strategies
.
Int J Mol Sci
.
2021
;
22
(
15
):
8278
.
50.
Orazi
G
,
O’Toole
GA
.
Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection
.
mBio
.
2017
;
8
(
4
):
e00873-17
.
You do not currently have access to this content.