Introduction: Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has shown significant clinical benefits in patients with EGFR-sensitizing mutations or the EGFR T790M mutation. The homologous recombination (HR) pathway is crucial for repairing DNA double-strand breaks (DSBs). Rad51 plays a central role in HR, facilitating the search for homology and promoting DNA strand exchange between homologous DNA molecules. Rad51 is overexpressed in numerous types of cancer cells. B02, a specific small molecule inhibitor of Rad51, inhibits the DNA strand exchange activity of Rad51. Previous studies have indicated that B02 disrupted Rad51 foci formation in response to DNA damage and inhibited DSBs repair in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. However, the potential therapeutic effects of combining osimertinib with a Rad51 inhibitor are not well understood. The aim of this study was to elucidate whether the downregulation of Rad51 expression and activity can enhance the osimertinib-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells. Methods: We used the MTS, trypan blue dye exclusion and colony-formation ability assay to determine whether osimertinib alone or in combination with B02 had cytotoxic effects on NSCLC cell lines. Real-time polymerase chain reaction was conducted to measure the amounts of Rad51 mRNA. The protein levels of phosphorylated AKT and Rad51 were determined by Western blot analysis. Results: We found that osimertinib reduced Rad51 expression by inactivating AKT activity. Rad51 knockdown using small interfering RNA or AKT inactivation through the phosphatidylinositol 3-kinase inhibitor LY294002 or si-AKT RNA transfection enhanced the cytotoxic and growth inhibitory effects of osimertinib. In contrast, AKT-CA (a constitutively active form of AKT) vector-enforced expression could mitigate the cytotoxic and cell growth inhibitory effects of osimertinib. Furthermore, B02 significantly enhanced the cytotoxic and cell growth inhibitory effects of osimertinib in NSCLC cells. Compared to parental cells, the activation of AKT and Rad51 expression in osimertinib-resistant cells could not be significantly inhibited by osimertinib treatment. Moreover, the increased expression of Rad51 is associated with the resistance mechanism in osimertinib-resistant H1975 and A549 cells. Conclusion: Collectively, the downregulation of Rad51 expression and activity enhances the cytotoxic effect of osimertinib in human NSCLC cells.

1.
Gajra
A
,
Newman
N
,
Gamble
GP
,
Abraham
NZ
,
Kohman
LJ
,
Graziano
SL
.
Impact of tumor size on survival in stage IA non-small cell lung cancer: a case for subdividing stage IA disease
.
Lung Cancer
.
2003
;
42
(
1
):
51
7
.
2.
Janne
PA
,
Yang
JC
,
Kim
DW
,
Planchard
D
,
Ohe
Y
,
Ramalingam
SS
, et al
.
AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer
.
N Engl J Med
.
2015
;
372
(
18
):
1689
99
.
3.
Mok
TS
,
Wu
YL
,
Ahn
MJ
,
Garassino
MC
,
Kim
HR
,
Ramalingam
SS
, et al
.
Osimertinib or platinum-pemetrexed in EGFR t790m-positive lung cancer
.
N Engl J Med
.
2017
;
376
(
7
):
629
40
.
4.
Soria
JC
,
Ohe
Y
,
Vansteenkiste
J
,
Reungwetwattana
T
,
Chewaskulyong
B
,
Lee
KH
, et al
.
Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer
.
N Engl J Med
.
2018
;
378
(
2
):
113
25
.
5.
Blaquier
JB
,
Ortiz-Cuaran
S
,
Ricciuti
B
,
Mezquita
L
,
Cardona
AF
,
Recondo
G
.
Tackling osimertinib resistance in EGFR-mutant non-small cell lung cancer
.
Clin Cancer Res
.
2023
;
29
(
18
):
3579
91
.
6.
Feldt
SL
,
Bestvina
CM
.
The role of MET in resistance to EGFR inhibition in NSCLC: a review of mechanisms and treatment implications
.
Cancers
.
2023
;
15
(
11
):
2998
.
7.
Benson
FE
,
Stasiak
A
,
West
SC
.
Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA
.
Embo J
.
1994
;
13
(
23
):
5764
71
.
8.
Buchhop
S
,
Gibson
MK
,
Wang
XW
,
Wagner
P
,
Sturzbecher
HW
,
Harris
CC
.
Interaction of p53 with the human Rad51 protein
.
Nucleic Acids Res
.
1997
;
25
(
19
):
3868
74
.
9.
Ito
M
,
Fujita
Y
,
Shinohara
A
.
Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication
.
DNA repair
.
2024
;
134
:
103613
.
10.
Bhat
KP
,
Krishnamoorthy
A
,
Dungrawala
H
,
Garcin
EB
,
Modesti
M
,
Cortez
D
.
RADX modulates RAD51 activity to control replication fork protection
.
Cell Rep
.
2018
;
24
(
3
):
538
45
.
11.
Benson
FE
,
Baumann
P
,
West
SC
.
Synergistic actions of Rad51 and Rad52 in recombination and DNA repair
.
Nature
.
1998
;
391
(
6665
):
401
4
.
12.
Solinger
JA
,
Lutz
G
,
Sugiyama
T
,
Kowalczykowski
SC
,
Heyer
WD
.
Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament
.
J Mol Biol
.
2001
;
307
(
5
):
1207
21
.
13.
Haaf
T
,
Golub
EI
,
Reddy
G
,
Radding
CM
,
Ward
DC
.
Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes
.
Proc Natl Acad Sci USA
.
1995
;
92
(
6
):
2298
302
.
14.
Barlow
JH
,
Rothstein
R
.
Timing is everything: cell cycle control of Rad52
.
Cell Div
.
2010
;
5
:
7
.
15.
Bello
VE
,
Aloyz
RS
,
Christodoulopoulos
G
,
Panasci
LC
.
Homologous recombinational repair vis-a-vis chlorambucil resistance in chronic lymphocytic leukemia
.
Biochem Pharmacol
.
2002
;
63
(
9
):
1585
8
.
16.
Slupianek
A
,
Hoser
G
,
Majsterek
I
,
Bronisz
A
,
Malecki
M
,
Blasiak
J
, et al
.
Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis
.
Mol Cell Biol
.
2002
;
22
(
12
):
4189
201
.
17.
Smith
CC
,
Aylott
MC
,
Fisher
KJ
,
Lynch
AM
,
Gooderham
NJ
.
DNA damage responses after exposure to DNA-based products
.
J Gene Med
.
2006
;
8
(
2
):
175
85
.
18.
Qiao
GB
,
Wu
YL
,
Yang
XN
,
Zhong
WZ
,
Xie
D
,
Guan
XY
, et al
.
High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients
.
Br J Cancer
.
2005
;
93
(
1
):
137
43
.
19.
Takenaka
T
,
Yoshino
I
,
Kouso
H
,
Ohba
T
,
Yohena
T
,
Osoegawa
A
, et al
.
Combined evaluation of Rad51 and ERCC1 expressions for sensitivity to platinum agents in non-small cell lung cancer
.
Int J Cancer
.
2007
;
121
(
4
):
895
900
.
20.
Morrison
C
,
Weterings
E
,
Mahadevan
D
,
Sanan
A
,
Weinand
M
,
Stea
B
.
Expression levels of RAD51 inversely correlate with survival of glioblastoma patients
.
Cancers (Basel)
.
2021
;
13
(
21
):
5358
.
21.
Mo
N
,
Lu
YK
,
Xie
WM
,
Liu
Y
,
Zhou
WX
,
Wang
HX
, et al
.
Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression
.
Oncol Rep
.
2014
;
32
(
5
):
1905
12
.
22.
Xu
Y
,
Chen
K
,
Cai
Y
,
Cheng
C
,
Zhang
Z
,
Xu
G
.
Overexpression of Rad51 predicts poor prognosis and silencing of Rad51 increases chemo-sensitivity to doxorubicin in neuroblastoma
.
Am J Transl Res
.
2019
;
11
(
9
):
5788
99
.
23.
Huang
F
,
Motlekar
NA
,
Burgwin
CM
,
Napper
AD
,
Diamond
SL
,
Mazin
AV
.
Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening
.
ACS Chem Biol
.
2011
;
6
(
6
):
628
35
.
24.
Huang
F
,
Mazin
AV
.
A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts
.
PLoS One
.
2014
;
9
(
6
):
e100993
.
25.
Xu
N
,
Lao
Y
,
Zhang
Y
,
Gillespie
DA
.
Akt: a double-edged sword in cell proliferation and genome stability
.
J Oncol
.
2012
;
2012
:
951724
.
26.
Kao
GD
,
Jiang
Z
,
Fernandes
AM
,
Gupta
AK
,
Maity
A
.
Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation
.
J Biol Chem
.
2007
;
282
(
29
):
21206
12
.
27.
Toulany
M
,
Kehlbach
R
,
Florczak
U
,
Sak
A
,
Wang
S
,
Chen
J
, et al
.
Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair
.
Mol Cancer Ther
.
2008
;
7
(
7
):
1772
81
.
28.
Golding
SE
,
Morgan
RN
,
Adams
BR
,
Hawkins
AJ
,
Povirk
LF
,
Valerie
K
.
Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells
.
Cancer Biol Ther
.
2009
;
8
(
8
):
730
8
.
29.
Shkundina
IS
,
Gall
AA
,
Dick
A
,
Cocklin
S
,
Mazin
AV
.
New RAD51 inhibitors to target homologous recombination in human cells
.
Genes
.
2021
;
12
(
6
):
920
.
30.
King
HO
,
Brend
T
,
Payne
HL
,
Wright
A
,
Ward
TA
,
Patel
K
, et al
.
RAD51 is a selective DNA repair target to radiosensitize glioma stem cells
.
Stem Cell Rep
.
2017
;
8
(
1
):
125
39
.
31.
Peters
GJ
,
van der Wilt
CL
,
van Moorsel
CJ
,
Kroep
JR
,
Bergman
AM
,
Ackland
SP
.
Basis for effective combination cancer chemotherapy with antimetabolites
.
Pharmacol Ther
.
2000
;
87
(
2–3
):
227
53
.
32.
Wu
M
,
Wang
X
,
McGregor
N
,
Pienta
KJ
,
Zhang
J
.
Dynamic regulation of Rad51 by E2F1 and p53 in prostate cancer cells upon drug-induced DNA damage under hypoxia
.
Mol Pharmacol
.
2014
;
85
(
6
):
866
76
.
33.
Planchard
D
,
Popat
S
,
Kerr
K
,
Novello
S
,
Smit
EF
,
Faivre-Finn
C
, et al
.
Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2018
;
29
(
Suppl 4
):
iv192
237
.
34.
Ramalingam
SS
,
Yang
JC
,
Lee
CK
,
Kurata
T
,
Kim
DW
,
John
T
, et al
.
Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer
.
J Clin Oncol
.
2018
;
36
(
9
):
841
9
.
35.
Minari
R
,
Bordi
P
,
Del Re
M
,
Facchinetti
F
,
Mazzoni
F
,
Barbieri
F
, et al
.
Primary resistance to osimertinib due to SCLC transformation: issue of T790M determination on liquid re-biopsy
.
Lung Cancer
.
2018
;
115
:
21
7
.
36.
Yang
Z
,
Yang
N
,
Ou
Q
,
Xiang
Y
,
Jiang
T
,
Wu
X
, et al
.
Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients
.
Clin Cancer Res
.
2018
;
24
(
13
):
3097
107
.
37.
Remon
J
,
Steuer
CE
,
Ramalingam
SS
,
Felip
E
.
Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients
.
Ann Oncol
.
2018
;
29
(
Suppl l_1
):
i20
7
.
38.
Liang
XM
,
Qin
Q
,
Liu
BN
,
Li
XQ
,
Zeng
LL
,
Wang
J
, et al
.
Targeting DNA-PK overcomes acquired resistance to third-generation EGFR-TKI osimertinib in non-small-cell lung cancer
.
Acta Pharmacol Sin
.
2021
;
42
(
4
):
648
54
.
39.
Laface
C
,
Maselli
FM
,
Santoro
AN
,
Iaia
ML
,
Ambrogio
F
,
Laterza
M
, et al
.
The resistance to EGFR-TKIs in non-small cell lung cancer: from molecular mechanisms to clinical application of new therapeutic strategies
.
Pharmaceutics
.
2023
;
15
(
6
):
1604
.
40.
Yu
HA
,
Tian
SK
,
Drilon
AE
,
Borsu
L
,
Riely
GJ
,
Arcila
ME
, et al
.
Acquired resistance of EGFR-mutant lung cancer to a t790m-specific EGFR inhibitor: emergence of a third mutation (C797S) in the EGFR tyrosine kinase domain
.
JAMA Oncol
.
2015
;
1
(
7
):
982
4
.
41.
Jackman
D
,
Pao
W
,
Riely
GJ
,
Engelman
JA
,
Kris
MG
,
Janne
PA
, et al
.
Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer
.
J Clin Oncol
.
2010
;
28
(
2
):
357
60
.
42.
Ortiz-Cuaran
S
,
Scheffler
M
,
Plenker
D
,
Dahmen
L
,
Scheel
AH
,
Fernandez-Cuesta
L
, et al
.
Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors
.
Clin Cancer Res
.
2016
;
22
(
19
):
4837
47
.
43.
Ko
JC
,
Hong
JH
,
Wang
LH
,
Cheng
CM
,
Ciou
SC
,
Lin
ST
, et al
.
Role of repair protein Rad51 in regulating the response to gefitinib in human non-small cell lung cancer cells
.
Mol Cancer Ther
.
2008
;
7
(
11
):
3632
41
.
44.
Leon-Galicia
I
,
Diaz-Chavez
J
,
Albino-Sanchez
ME
,
Garcia-Villa
E
,
Bermudez-Cruz
R
,
Garcia-Mena
J
, et al
.
Resveratrol decreases Rad51 expression and sensitizes cisplatin-resistant MCF-7 breast cancer cells
.
Oncol Rep
.
2018
;
39
(
6
):
3025
33
.
You do not currently have access to this content.