Introduction: Quercetin has been reported to have antitumor activity of a wide range of cancers, including breast, lung, colon, prostate. Here, we investigated the protective role of quercetin in glioblastoma (GBM), which causes a higher risk of morbidity and mortality, and explored the antitumor effects of quercetin on GBM using the U87MG and T98G cells and GBM mouse models. Methods: Cell viability and colony formation assays were performed by CCK-8 and clone-formation assays. GBM xenograft mouse model was established to evaluate the tumor burden of mice treated with or without quercetin. To investigate spontaneous locomotor activity and survival rate of mice, orthotopic transplantation was performed through brain stereotaxic injection of U87 cells. Seahorse and Western blot were performed to examine the alteration of glycolytic metabolism GBM. Results: We found that quercetin administration inhibited GBM cell proliferation and promoted cell apoptosis in vitro. Quercetin suppressed GBM growth, restored spontaneous locomotor activity, and improved survival rate without toxicity to peripheral organs in vivo. Moreover, quercetin inhibited glycolytic metabolism in tumor tissue. Discussion/Conclusion: Mechanistically, quercetin inhibited proliferation and angiogenesis, promoted cancer cell apoptosis, and finally improved locomotor activity and survival by inhibiting the glycolytic metabolism in GBM tissues, suggesting that quercetin is a potential drug for the treatment of GBM.

1.
Alifieris
C
,
Trafalis
DT
.
Glioblastoma multiforme: pathogenesis and treatment
.
Pharmacol Ther
.
2015
;
152
:
63
82
.
2.
Holland
EC
.
Glioblastoma multiforme: the terminator
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
12
):
6242
4
.
3.
Urbanska
K
,
Sokolowska
J
,
Szmidt
M
,
Sysa
P
.
Glioblastoma multiforme: an overview
.
Contemp Oncol
.
2014
;
18
(
5
):
307
12
.
4.
Gilkes
DM
,
Semenza
GL
,
Wirtz
D
.
Hypoxia and the extracellular matrix: drivers of tumour metastasis
.
Nat Rev Cancer
.
2014
;
14
(
6
):
430
9
.
5.
Giaccia
A
,
Siim
BG
,
Johnson
RS
.
HIF-1 as a target for drug development
.
Nat Rev Drug Discov
.
2003
;
2
(
10
):
803
11
.
6.
Harris
AL
.
Hypoxia: a key regulatory factor in tumour growth
.
Nat Rev Cancer
.
2002
;
2
(
1
):
38
47
.
7.
Semenza
GL
.
Targeting HIF-1 for cancer therapy
.
Nat Rev Cancer
.
2003
;
3
(
10
):
721
32
.
8.
Huang
LE
.
Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation
.
Cell Death Differ
.
2008
;
15
(
4
):
672
7
.
9.
Masoud
GN
,
Li
W
.
HIF-1alpha pathway: role, regulation and intervention for cancer therapy
.
Acta Pharm Sin B
.
2015
;
5
(
5
):
378
89
.
10.
Guda
MR
,
Labak
CM
,
Omar
SI
,
Asuthkar
S
,
Airala
S
,
Tuszynski
J
,
.
GLUT1 and TUBB4 in glioblastoma could be efficacious targets
.
Cancers
.
2019
;
11
(
9
):
1308
.
11.
Masui
K
,
Tanaka
K
,
Akhavan
D
,
Babic
I
,
Gini
B
,
Matsutani
T
,
.
mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
.
Cell Metab
.
2013
;
18
(
5
):
726
39
.
12.
Murakami
A
,
Ashida
H
,
Terao
J
.
Multitargeted cancer prevention by quercetin
.
Cancer Lett
.
2008
;
269
(
2
):
315
25
.
13.
Tavana
E
,
Mollazadeh
H
,
Mohtashami
E
,
Modaresi
SMS
,
Hosseini
A
,
Sabri
H
,
.
Quercetin: a promising phytochemical for the treatment of glioblastoma multiforme
.
BioFactors
.
2020
;
46
(
3
):
356
66
.
14.
Cao
L
,
Yang
Y
,
Ye
Z
,
Lin
B
,
Zeng
J
,
Li
C
,
.
Quercetin3methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways
.
Int J Mol Med
.
2018
;
42
(
3
):
1625
36
.
15.
Salehi
B
,
Machin
L
,
Monzote
L
,
Sharifi-Rad
J
,
Ezzat
SM
,
Salem
MA
,
.
Therapeutic potential of quercetin: new insights and perspectives for human health
.
ACS Omega
.
2020
;
5
(
20
):
11849
72
.
16.
Crowley
LC
,
Waterhouse
NJ
.
Detecting cleaved caspase-3 in apoptotic cells by flow cytometry
.
Cold Spring Harb Protoc
.
2016
;
2016
(
11
). http://dx.doi.org/10.1101/pdb.prot087312.
17.
Albatany
M
,
Meakin
S
,
Bartha
R
.
The monocarboxylate transporter inhibitor quercetin induces intracellular acidification in a mouse model of glioblastoma multiforme: in-vivo detection using magnetic resonance imaging
.
Invest New Drugs
.
2019
;
37
(
4
):
595
601
.
18.
Rego
GNA
,
Nucci
MP
,
Mamani
JB
,
Oliveira
FA
,
Marti
LC
,
Filgueiras
IS
,
.
Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study
.
Int J Mol Sci
.
2020
;
21
(
3
):
958
.
19.
Michaud-Levesque
J
,
Bousquet-Gagnon
N
,
Béliveau
R
.
Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration
.
Exp Cell Res
.
2012
;
318
(
8
):
925
35
.
20.
Kayaselcuk
F
,
Zorludemir
S
,
Gumurduhu
D
,
Zeren
H
,
Erman
T
.
PCNA and Ki-67 in central nervous system tumors: correlation with the histological type and grade
.
J Neurooncol
.
2002
;
57
(
2
):
115
21
.
21.
Marfia
G
,
Navone
SE
,
Fanizzi
C
,
Tabano
S
,
Pesenti
C
,
Abdel Hadi
L
,
.
Prognostic value of preoperative von Willebrand factor plasma levels in patients with glioblastoma
.
Cancer Med
.
2016
;
5
(
8
):
1783
90
.
22.
Trejo-Solis
C
,
Serrano-Garcia
N
,
Escamilla-Ramirez
A
,
Castillo-Rodriguez
RA
,
Jimenez-Farfan
D
,
Palencia
G
,
.
Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma
.
Int J Mol Sci
.
2018
;
19
(
12
):
3773
.
23.
Kato
R
,
Nakadate
T
,
Yamamoto
S
,
Sugimura
T
.
Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and ornithine decarboxylase activity by quercetin: possible involvement of lipoxygenase inhibition
.
Carcinogenesis
.
1983
;
4
(
10
):
1301
5
.
24.
Khanduja
KL
,
Gandhi
RK
,
Pathania
V
,
Syal
N
.
Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice
.
Food Chem Toxicol
.
1999
;
37
(
4
):
313
8
.
25.
Mahmoud
NN
,
Carothers
AM
,
Grunberger
D
,
Bilinski
RT
,
Churchill
MR
,
Martucci
C
,
.
Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis
.
Carcinogenesis
.
2000
;
21
(
5
):
921
7
.
26.
Makita
H
,
Tanaka
T
,
Fujitsuka
H
,
Tatematsu
N
,
Satoh
K
,
Hara
A
,
.
Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin
.
Cancer Res
.
1996
;
56
(
21
):
4904
9
.
27.
Atif
F
,
Yousuf
S
,
Espinosa-Garcia
C
,
Sergeeva
E
,
Stein
DG
.
Progesterone treatment attenuates glycolytic metabolism and induces senescence in glioblastoma
.
Sci Rep
.
2019
;
9
(
1
):
988
.
28.
Azad
TD
,
Duffau
H
.
Limitations of functional neuroimaging for patient selection and surgical planning in glioma surgery
.
Neurosurg Focus
.
2020
;
48
(
2
):
E12
.
29.
Vaupel
P
,
Schmidberger
H
,
Mayer
A
.
The warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression
.
Int J Radiat Biol
.
2019
;
95
(
7
):
912
9
.
30.
Liu
Y
,
Tang
ZG
,
Lin
Y
,
Qu
XG
,
Lv
W
,
Wang
GB
,
.
Effects of quercetin on proliferation and migration of human glioblastoma U251 cells
.
Biomed Pharmacother
.
2017
;
92
:
33
8
.
You do not currently have access to this content.