Abstract
Objective: To investigate whether TRIAP1 inhibition affects the ovarian cancer cell resistance to cisplatin (DDP) via the Cyt c/Apaf-1/caspase-9 pathway by in vitro and in vivo experiments. Methods: CCK8 assay was performed to find out how treatment with both TRIAP1 siRNA and DDP affects the cell viability of SKOV3 cells and DDP-resistant human ovarian carcinoma cell line SKOV3/DDP. SKOV3/DDP cells were transfected with control siRNA or TRIAP1 siRNA before 24 h of treatment with DDP (5 μg/mL). Flow cytometry was employed to detect cell apoptosis and Western blot to examine the expressions of Cyt c/Apaf-1/caspase-9 pathway-related proteins. SKOV3/DDP cells transfected with control siRNA or TRIAP1 siRNA were subcutaneously injected into BALB/c-nu/nu nude mice followed by the intraperitoneal injection of DDP (4 mg/kg). Cyt c/Apaf-1/caspase-9 pathway in transplanted tumors was detected by immunohistochemistry. Results: TRIAP1 expression declined in SKOV3 cells when compared with SKOV3/DDP cells. The proliferation rate was lower in SKOV3/DDP cells transfected with TRIAP1 siRNA combined with treatment of DDP (1, 2, 4, 6, 8, 16, 32 μg/mL) than in those transfected with control siRNA. Moreover, the TRIAP1 siRNA group had an increased SKOV3/DDP cell apoptosis rate with the activation of the Cyt c/Apaf-1/caspase-9 pathway. During DDP treatment, nude mice in TRIAP1 siRNA group had slower growth and smaller size of transplanted tumor than those in control siRNA group, with increased expression of Cyt c, Apaf-1, and caspase-9. Conclusion: TRIAP1 inhibition may enhance the sensitivity of SKOV3/DDP cells to cisplatin via activation of the Cyt c/Apaf-1/caspase-9 pathway.