Background: Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. Summary: The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.

1.
Wei
SC
,
Duffy
CR
,
Allison
JP
.
Duffy, JP Allison JP: mechanisms of immune checkpoint blockade therapy
.
Cancer Discov
.
2018
Sep
;
8
(
9
):
1069
86
.
[PubMed]
2159-8274
2.
Krummel
MF
,
Allison
JP
.
CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation
.
J Exp Med
.
1995
Aug
;
182
(
2
):
459
65
.
[PubMed]
0022-1007
3.
Graziani
G
,
Tentori
L
,
Navarra
P
.
Ipilimumab: a novel immunostimulatory monoclonal antibody for the treatment of cancer
.
Pharmacol Res
.
2012
Jan
;
65
(
1
):
9
22
.
[PubMed]
1043-6618
4.
Tentori
L
,
Lacal
PM
,
Graziani
G
.
Challenging resistance mechanisms to therapies for metastatic melanoma
.
Trends Pharmacol Sci
.
2013
Dec
;
34
(
12
):
656
66
.
[PubMed]
0165-6147
5.
Hodi
FS
,
O’Day
SJ
,
McDermott
DF
,
Weber
RW
,
Sosman
JA
,
Haanen
JB
, et al.
.
Improved survival with ipilimumab in patients with metastatic melanoma
.
N Engl J Med
.
2010
Aug
;
363
(
8
):
711
23
.
[PubMed]
0028-4793
6.
Robert
C
,
Thomas
L
,
Bondarenko
I
,
O’Day
S
,
Weber
J
,
Garbe
C
, et al.
.
Ipilimumab plus dacarbazine for previously untreated metastatic melanoma
.
N Engl J Med
.
2011
Jun
;
364
(
26
):
2517
26
.
[PubMed]
0028-4793
7.
Garbe
C
,
Eigentler
TK
,
Keilholz
U
,
Hauschild
A
,
Kirkwood
JM
.
Systematic review of medical treatment in melanoma: current status and future prospects
.
Oncologist
.
2011
;
16
(
1
):
5
24
.
[PubMed]
1083-7159
8.
Schadendorf
D
,
Hodi
FS
,
Robert
C
,
Weber
JS
,
Margolin
K
,
Hamid
O
, et al.
.
Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma
.
J Clin Oncol
.
2015
Jun
;
33
(
17
):
1889
94
.
[PubMed]
0732-183X
9.
Kim
C
,
Lee
CW
,
Kovacic
L
,
Shah
A
,
Klasa
R
,
Savage
KJ
.
Long-term survival in patients with metastatic melanoma treated with DTIC or temozolomide
.
Oncologist
.
2010
;
15
(
7
):
765
71
.
[PubMed]
1083-7159
10.
Calpe-Armero
P
,
Ferriols-Lisart
R
,
Ferriols-Lisart
F
,
Pérez-Pitarch
A
.
Effectiveness of Nivolumab versus Docetaxel as Second-Line Treatment in Non-Small Cell Lung Cancer Patients in Clinical Practice
.
Chemotherapy
.
2017
;
62
(
6
):
374
80
.
[PubMed]
0009-3157
11.
Constantinidou
A
,
Alifieris
C
,
Trafalis
DT
.
Targeting Programmed Cell Death -1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy
.
Pharmacol Ther
.
2018
;
7258
:
30173
6
.
[PubMed]
0163-7258
12.
Poma
MJ
,
Ostios Garcia
L
,
Villamayor Sanchez
J
,
D’errico
G
.
What do we know about cancer immunotherapy? Long-term survival and immune-related adverse events
.
Allergol Immunopathol (Madr)
.
2018
;
054618
:
30082
X
.
[PubMed]
0301-0546
13.
Topalian
SL
,
Drake
CG
,
Pardoll
DM
.
Immune checkpoint blockade: a common denominator approach to cancer therapy
.
Cancer Cell
.
2015
Apr
;
27
(
4
):
450
61
.
[PubMed]
1535-6108
14.
Larkin
J
,
Chiarion-Sileni
V
,
Gonzalez
R
,
Grob
JJ
,
Cowey
CL
,
Lao
CD
, et al.
.
Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
.
N Engl J Med
.
2015
Jul
;
373
(
1
):
23
34
.
[PubMed]
0028-4793
15.
Postow
MA
,
Chesney
J
,
Pavlick
AC
,
Robert
C
,
Grossmann
K
,
McDermott
D
, et al.
.
Nivolumab and ipilimumab versus ipilimumab in untreated melanoma
.
N Engl J Med
.
2015
May
;
372
(
21
):
2006
17
.
[PubMed]
0028-4793
16.
Robert
C
,
Schachter
J
,
Long
GV
,
Arance
A
,
Grob
JJ
,
Mortier
L
, et al.;
KEYNOTE-006 investigators
.
Pembrolizumab versus Ipilimumab in Advanced Melanoma
.
N Engl J Med
.
2015
Jun
;
372
(
26
):
2521
32
.
[PubMed]
0028-4793
17.
Schachter
J
,
Ribas
A
,
Long
GV
,
Arance
A
,
Grob
JJ
,
Mortier
L
, et al.
.
Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006)
.
Lancet
.
2017
Oct
;
390
(
10105
):
1853
62
.
[PubMed]
0140-6736
18.
Korman
A
,
Chen
B
,
Wang
C
,
Wu
L
,
Cardarelli
P
,
Selby
M
.
Activity of anti-PD-1 in murine tumour models: role of “host” PD-L1 and synergistic effect of anti-PD-1 and anti-CTLA-4
.
J Immunol
.
2007
;
178
:
1
48
.0022-1767
19.
Wolchok
JD
,
Chiarion-Sileni
V
,
Gonzalez
R
,
Rutkowski
P
,
Grob
JJ
,
Cowey
CL
, et al.
.
Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma
.
N Engl J Med
.
2017
Oct
;
377
(
14
):
1345
56
.
[PubMed]
0028-4793
20.
Hodi
FS
,
Chiarion-Sileni
V
,
Gonzalez
R
,
Grob
JJ
,
Rutkowski
P
,
Cowey
CL
, et al.
.
Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial
.
Lancet Oncol
.
2018
Nov
;
19
(
11
):
1480
92
.
[PubMed]
1470-2045
21.
Topalian
SL
,
Sznol
M
,
McDermott
DF
,
Kluger
HM
,
Carvajal
RD
,
Sharfman
WH
, et al.
.
Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab
.
J Clin Oncol
.
2014
Apr
;
32
(
10
):
1020
30
.
[PubMed]
0732-183X
22.
Sharma
P
,
Allison
JP
.
The future of immune checkpoint therapy
.
Science
.
2015
Apr
;
348
(
6230
):
56
61
.
[PubMed]
0036-8075
23.
Spranger
S
.
Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment
.
Int Immunol
.
2016
Aug
;
28
(
8
):
383
91
.
[PubMed]
0953-8178
24.
Gettinger
S
,
Horn
L
,
Jackman
D
,
Spigel
D
,
Antonia
S
,
Hellmann
M
, et al.
.
Five-Year Follow-Up of nivolumab in previously treated advanced Non-Small-Cell Lung cancer: Results From the CA209-003 Study
.
J Clin Oncol
.
2018
Jun
;
36
(
17
):
1675
84
.
[PubMed]
0732-183X
25.
Kotake
M
,
Miura
Y
,
Imai
H
,
Mori
K
,
Sakurai
R
,
Kaira
K
, et al.
.
Post-Progression Survival Associated with Overall Survival in Patients with Advanced Non-Small-Cell Lung Cancer Receiving Docetaxel Monotherapy as Second-Line Chemotherapy
.
Chemotherapy
.
2017
;
62
(
4
):
205
13
.
[PubMed]
0009-3157
26.
Battaglin
F
,
Naseem
M
,
Lenz
HJ
,
Salem
ME
.
Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives
.
Clin Adv Hematol Oncol
.
2018
Nov
;
16
(
11
):
735
45
.
[PubMed]
1543-0790
27.
Motzer
RJ
,
Tannir
NM
,
McDermott
DF
,
Arén Frontera
O
,
Melichar
B
,
Choueiri
TK
, et al.;
CheckMate 214 Investigators
.
Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma
.
N Engl J Med
.
2018
Apr
;
378
(
14
):
1277
90
.
[PubMed]
0028-4793
28.
Murata
S
,
Takahama
Y
,
Kasahara
M
,
Tanaka
K
.
The immunoproteasome and thymoproteasome: functions, evolution and human disease
.
Nat Immunol
.
2018
Sep
;
19
(
9
):
923
31
.
[PubMed]
1529-2908
29.
Overman
MJ
,
Lonardi
S
,
Wong
KY
,
Lenz
HJ
,
Gelsomino
F
,
Aglietta
M
, et al.
.
Durable clinical benefit with nivolumab plus ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High metastatic colorectal cancer
.
J Clin Oncol
.
2018
Mar
;
36
(
8
):
773
9
.
[PubMed]
0732-183X
30.
Gioia
M
,
Monaco
S
,
Van Den Steen
PE
,
Sbardella
D
,
Grasso
G
,
Marini
S
, et al.
.
The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B
.
J Mol Biol
.
2009
Feb
;
386
(
2
):
419
34
.
[PubMed]
0022-2836
31.
Bergers
G
,
Brekken
R
,
McMahon
G
,
Vu
TH
,
Itoh
T
,
Tamaki
K
, et al.
.
Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis
.
Nat Cell Biol
.
2000
Oct
;
2
(
10
):
737
44
.
[PubMed]
1465-7392
32.
Kessenbrock
K
,
Plaks
V
,
Werb
Z
.
Matrix metalloproteinases: regulators of the tumor microenvironment
.
Cell
.
2010
Apr
;
141
(
1
):
52
67
.
[PubMed]
0092-8674
33.
Sbardella
D
,
Inzitari
R
,
Iavarone
F
,
Gioia
M
,
Marini
S
,
Sciandra
F
, et al.
.
Enzymatic processing by MMP-2 and MMP-9 of wild-type and mutated mouse β-dystroglycan
.
IUBMB Life
.
2012
Dec
;
64
(
12
):
988
94
.
[PubMed]
1521-6543
34.
Lamouille
S
,
Xu
J
,
Derynck
R
.
Molecular mechanisms of epithelial-mesenchymal transition
.
Nat Rev Mol Cell Biol
.
2014
Mar
;
15
(
3
):
178
96
.
[PubMed]
1471-0072
35.
Sbardella
D
,
Fasciglione
GF
,
Gioia
M
,
Ciaccio
C
,
Tundo
GR
,
Marini
S
, et al.
.
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes
.
Mol Aspects Med
.
2012
Apr
;
33
(
2
):
119
208
.
[PubMed]
0098-2997
36.
Rivera
LB
,
Meyronet
D
,
Hervieu
V
,
Frederick
MJ
,
Bergsland
E
,
Bergers
G
.
Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy
.
Cell Rep
.
2015
Apr
;
11
(
4
):
577
91
.
[PubMed]
2639-1856
37.
Tartour
E
,
Pere
H
,
Maillere
B
,
Terme
M
,
Merillon
N
,
Taieb
J
, et al.
.
Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy
.
Cancer Metastasis Rev
.
2011
Mar
;
30
(
1
):
83
95
.
[PubMed]
0167-7659
38.
Eissler
N
,
Mao
Y
,
Brodin
D
,
Reuterswärd
P
,
Andersson Svahn
H
,
Johnsen
JI
, et al.
.
Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade
.
OncoImmunology
.
2016
Sep
;
5
(
12
):
e1232222
.
[PubMed]
2162-4011
39.
Graziani
G
,
Ruffini
F
,
Tentori
L
,
Scimeca
M
,
Dorio
AS
,
Atzori
MG
, et al.
.
Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding
.
Oncotarget
.
2016
Nov
;
7
(
45
):
72868
85
.
[PubMed]
1949-2553
40.
Atzori
MG
,
Tentori
L
,
Ruffini
F
,
Ceci
C
,
Bonanno
E
,
Scimeca
M
, et al.
.
The anti-vascular endothelial growth factor receptor-1 monoclonal antibody D16f7 inhibits glioma growth and angiogenesis in vivo
.
J Pharmacol Exp Ther
.
2018
Jan
;
364
(
1
):
77
86
.
[PubMed]
0022-3565
41.
Lacal
PM
,
Atzori
MG
,
Ruffini
F
,
Tentori
L
,
Graziani
G
.
Poly(ADP-ribose) polymerase inhibitor olaparib hampers placental growth factor-driven activation of myelomonocytic cells
.
Oncol Rep
.
2018
May
;
39
(
5
):
2261
9
.
[PubMed]
1021-335X
42.
Lacal
PM
,
Graziani
G
.
Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors
.
Pharmacol Res
.
2018
Oct
;
136
:
97
107
.
[PubMed]
1043-6618
43.
Duan
J
,
Wang
Y
,
Jiao
S
.
Checkpoint blockade-based immunotherapy in the context of tumor microenvironment: opportunities and challenges
.
Cancer Med
.
2018
Sep
;
7
(
9
):
4517
29
.
[PubMed]
2045-7634
44.
Marin-Acevedo
JA
,
Dholaria
B
,
Soyano
AE
,
Knutson
KL
,
Chumsri
S
,
Lou
Y
.
Next generation of immune checkpoint therapy in cancer: new developments and challenges
.
J Hematol Oncol
.
2018
Mar
;
11
(
1
):
39
.
[PubMed]
1756-8722
45.
Salama
AK
,
Moschos
SJ
.
Next steps in immuno-oncology: enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies
.
Ann Oncol
.
2017
Jan
;
28
(
1
):
57
74
.
[PubMed]
1569-8041
46.
Karamouzis
MV
,
Papavassiliou
AG
.
Combination of checkpoint inhibitors with other agents as a strategy to improve anti-cancer effect - a glimpse to the future
.
Expert Opin Investig Drugs
.
2018
Jul
;
27
(
7
):
569
72
.
[PubMed]
1354-3784
47.
Zahavi
DJ
,
Weiner
LM
:
Targeting multiple receptors to increase checkpoint blockade efficacy.
Int J Mol Sci
2019
; 4: 20(1).
48.
Amatore
F
,
Gorvel
L
,
Olive
D
.
Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy
.
Expert Opin Ther Targets
.
2018
Apr
;
22
(
4
):
343
51
.
[PubMed]
1472-8222
49.
Beatty
GL
,
Li
Y
,
Long
KB
.
Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists
.
Expert Rev Anticancer Ther
.
2017
Feb
;
17
(
2
):
175
86
.
[PubMed]
1473-7140
50.
Riccardi
C
,
Ronchetti
S
,
Nocentini
G
.
Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy
.
Expert Opin Ther Targets
.
2018
Sep
;
22
(
9
):
783
97
.
[PubMed]
1472-8222
51.
Sasidharan Nair
V
,
Elkord
E
.
Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells
.
Immunol Cell Biol
.
2018
Jan
;
96
(
1
):
21
33
.
[PubMed]
0818-9641
52.
Waight
JD
,
Gombos
RB
,
Wilson
NS
.
Harnessing co-stimulatory TNF receptors for cancer immunotherapy: current approaches and future opportunities
.
Hum Antibodies
.
2017
;
25
(
3-4
):
87
109
.
[PubMed]
1093-2607
53.
Chester
C
,
Sanmamed
MF
,
Wang
J
,
Melero
I
.
Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies
.
Blood
.
2018
Jan
;
131
(
1
):
49
57
.
[PubMed]
1528-0020
54.
Lam
ET
,
Eckhardt
SG
,
Messersmith
W
,
Jimeno
A
,
O’Bryant
CL
,
Ramanathan
RK
, et al.
.
Phase I Study of Enavatuzumab, a First-in-Class Humanized Monoclonal Antibody Targeting the TWEAK Receptor, in Patients with Advanced Solid Tumors
.
Mol Cancer Ther
.
2018
Jan
;
17
(
1
):
215
21
.
[PubMed]
1535-7163
55.
Huard
B
,
Gaulard
P
,
Faure
F
,
Hercend
T
,
Triebel
F
.
Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand
.
Immunogenetics
.
1994
;
39
(
3
):
213
7
.
[PubMed]
0093-7711
56.
Huard
B
,
Tournier
M
,
Triebel
F
.
LAG-3 does not define a specific mode of natural killing in human
.
Immunol Lett
.
1998
Apr
;
61
(
2-3
):
109
12
.
[PubMed]
0165-2478
57.
Kisielow
M
,
Kisielow
J
,
Capoferri-Sollami
G
,
Karjalainen
K
.
Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells
.
Eur J Immunol
.
2005
Jul
;
35
(
7
):
2081
8
.
[PubMed]
0014-2980
58.
Andreae
S
,
Buisson
S
,
Triebel
F
.
MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223)
.
Blood
.
2003
Sep
;
102
(
6
):
2130
7
.
[PubMed]
0006-4971
59.
Huang
CT
,
Workman
CJ
,
Flies
D
,
Pan
X
,
Marson
AL
,
Zhou
G
, et al.
.
Role of LAG-3 in regulatory T cells
.
Immunity
.
2004
Oct
;
21
(
4
):
503
13
.
[PubMed]
1074-7613
60.
Durham
NM
,
Nirschl
CJ
,
Jackson
CM
,
Elias
J
,
Kochel
CM
,
Anders
RA
, et al.
.
Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo
.
PLoS One
.
2014
Nov
;
9
(
11
):
e109080
.
[PubMed]
1932-6203
61.
Peña
J
,
Jones
NG
,
Bousheri
S
,
Bangsberg
DR
,
Cao
H
.
Lymphocyte activation gene-3 expression defines a discrete subset of HIV-specific CD8+ T cells that is associated with lower viral load
.
AIDS Res Hum Retroviruses
.
2014
Jun
;
30
(
6
):
535
41
.
[PubMed]
0889-2229
62.
Dijkstra
JM
,
Somamoto
T
,
Moore
L
,
Hordvik
I
,
Ototake
M
,
Fischer
U
.
Identification and characterization of a second CD4-like gene in teleost fish
.
Mol Immunol
.
2006
Feb
;
43
(
5
):
410
9
.
[PubMed]
0161-5890
63.
Huard
B
,
Prigent
P
,
Tournier
M
,
Bruniquel
D
,
Triebel
F
.
CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins
.
Eur J Immunol
.
1995
Sep
;
25
(
9
):
2718
21
.
[PubMed]
0014-2980
64.
Goldberg
MV
,
Drake
CG
.
LAG-3 in cancer immunotherapy
.
Curr Top Microbiol Immunol
.
2011
;
344
:
269
78
.
[PubMed]
0070-217X
65.
Fleury
S
,
Lamarre
D
,
Meloche
S
,
Ryu
SE
,
Cantin
C
,
Hendrickson
WA
, et al.
.
Mutational analysis of the interaction between CD4 and class II MHC: class II antigens contact CD4 on a surface opposite the gp120-binding site
.
Cell
.
1991
Sep
;
66
(
5
):
1037
49
.
[PubMed]
0092-8674
66.
Andrews
LP
,
Marciscano
AE
,
Drake
CG
,
Vignali
DA
.
LAG3 (CD223) as a cancer immunotherapy target
.
Immunol Rev
.
2017
Mar
;
276
(
1
):
80
96
.
[PubMed]
0105-2896
67.
Workman
CJ
,
Dugger
KJ
,
Vignali
DA
.
Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3
.
J Immunol
.
2002
Nov
;
169
(
10
):
5392
5
.
[PubMed]
0022-1767
68.
Maçon-Lemaître
L
,
Triebel
F
.
The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells
.
Immunology
.
2005
Jun
;
115
(
2
):
170
8
.
[PubMed]
0019-2805
69.
Long
L
,
Zhang
X
,
Chen
F
,
Pan
Q
,
Phiphatwatchara
P
,
Zeng
Y
, et al.
.
The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy
.
Genes Cancer
.
2018
May
;
9
(
5-6
):
176
89
.
[PubMed]
1947-6019
70.
Hannier
S
,
Tournier
M
,
Bismuth
G
,
Triebel
F
.
CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling
.
J Immunol
.
1998
Oct
;
161
(
8
):
4058
65
.
[PubMed]
0022-1767
71.
Hannier
S
,
Triebel
F
.
The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes
.
Int Immunol
.
1999
Nov
;
11
(
11
):
1745
52
.
[PubMed]
0953-8178
72.
Workman
CJ
,
Rice
DS
,
Dugger
KJ
,
Kurschner
C
,
Vignali
DA
.
Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3)
.
Eur J Immunol
.
2002
Aug
;
32
(
8
):
2255
63
.
[PubMed]
0014-2980
73.
Workman
CJ
,
Cauley
LS
,
Kim
IJ
,
Blackman
MA
,
Woodland
DL
,
Vignali
DA
.
Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo
.
J Immunol
.
2004
May
;
172
(
9
):
5450
5
.
[PubMed]
0022-1767
74.
Workman
CJ
,
Vignali
DA
.
The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells
.
Eur J Immunol
.
2003
Apr
;
33
(
4
):
970
9
.
[PubMed]
0014-2980
75.
Scala
E
,
Carbonari
M
,
Del Porto
P
,
Cibati
M
,
Tedesco
T
,
Mazzone
AM
, et al.
.
Lymphocyte activation gene-3 (LAG-3) expression and IFN-gamma production are variably coregulated in different human T lymphocyte subpopulations
.
J Immunol
.
1998
Jul
;
161
(
1
):
489
93
.
[PubMed]
0022-1767
76.
Matsuzaki
J
,
Gnjatic
S
,
Mhawech-Fauceglia
P
,
Beck
A
,
Miller
A
,
Tsuji
T
, et al.
.
Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer
.
Proc Natl Acad Sci USA
.
2010
Apr
;
107
(
17
):
7875
80
.
[PubMed]
0027-8424
77.
Li
FJ
,
Zhang
Y
,
Jin
GX
,
Yao
L
,
Wu
DQ
.
Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients
.
Immunol Lett
.
2013
Feb
;
150
(
1-2
):
116
22
.
[PubMed]
0165-2478
78.
Sittig
SP
,
Køllgaard
T
,
Grønbæk
K
,
Idorn
M
,
Hennenlotter
J
,
Stenzl
A
, et al.
.
Clonal expansion of renal cell carcinoma-infiltrating T lymphocytes
.
OncoImmunology
.
2013
Sep
;
2
(
9
):
e26014
.
[PubMed]
2162-4011
79.
Mishra
AK
,
Kadoishi
T
,
Wang
X
,
Driver
E
,
Chen
Z
,
Wang
XJ
, et al.
.
Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors
.
Oncotarget
.
2016
Dec
;
7
(
49
):
81341
56
.
[PubMed]
1949-2553
80.
Grosso
JF
,
Kelleher
CC
,
Harris
TJ
,
Maris
CH
,
Hipkiss
EL
,
De Marzo
A
, et al.
.
LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems
.
J Clin Invest
.
2007
Nov
;
117
(
11
):
3383
92
.
[PubMed]
0021-9738
81.
Bos
R
,
Marquardt
KL
,
Cheung
J
,
Sherman
LA
.
Functional differences between low- and high-affinity CD8(+) T cells in the tumor environment
.
OncoImmunology
.
2012
Nov
;
1
(
8
):
1239
47
.
[PubMed]
2162-4011
82.
Xu
F
,
Liu
J
,
Liu
D
,
Liu
B
,
Wang
M
,
Hu
Z
, et al.
.
LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses
.
Cancer Res
.
2014
Jul
;
74
(
13
):
3418
28
.
[PubMed]
0008-5472
83.
Kouo
T
,
Huang
L
,
Pucsek
AB
,
Cao
M
,
Solt
S
,
Armstrong
T
, et al.
.
Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells
.
Cancer Immunol Res
.
2015
Apr
;
3
(
4
):
412
23
.
[PubMed]
2326-6066
84.
Farsam
V
,
Hassan
ZM
,
Zavaran-Hosseini
A
,
Noori
S
,
Mahdavi
M
,
Ranjbar
M
.
Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo
.
Int Immunopharmacol
.
2011
Nov
;
11
(
11
):
1802
8
.
[PubMed]
1567-5769
85.
Wei
T
,
Zhang
J
,
Qin
Y
,
Wu
Y
,
Zhu
L
,
Lu
L
, et al.
.
Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients
.
Am J Cancer Res
.
2015
Jun
;
5
(
7
):
2190
201
.
[PubMed]
2156-6976
86.
Fallarino
F
,
Grohmann
U
,
Hwang
KW
,
Orabona
C
,
Vacca
C
,
Bianchi
R
, et al.
.
Modulation of tryptophan catabolism by regulatory T cells
.
Nat Immunol
.
2003
Dec
;
4
(
12
):
1206
12
.
[PubMed]
1529-2908
87.
Thornton
AM
,
Shevach
EM
.
CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production
.
J Exp Med
.
1998
Jul
;
188
(
2
):
287
96
.
[PubMed]
0022-1007
88.
Liang
B
,
Workman
C
,
Lee
J
,
Chew
C
,
Dale
BM
,
Colonna
L
, et al.
.
Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II
.
J Immunol
.
2008
May
;
180
(
9
):
5916
26
.
[PubMed]
0022-1767
89.
Workman
CJ
,
Wang
Y
,
El Kasmi
KC
,
Pardoll
DM
,
Murray
PJ
,
Drake
CG
, et al.
.
LAG-3 regulates plasmacytoid dendritic cell homeostasis
.
J Immunol
.
2009
Feb
;
182
(
4
):
1885
91
.
[PubMed]
0022-1767
90.
Nguyen
LT
,
Ohashi
PS
.
Clinical blockade of PD1 and LAG3—potential mechanisms of action
.
Nat Rev Immunol
.
2015
Jan
;
15
(
1
):
45
56
.
[PubMed]
1474-1733
91.
Woo
SR
,
Turnis
ME
,
Goldberg
MV
,
Bankoti
J
,
Selby
M
,
Nirschl
CJ
, et al.
.
Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape
.
Cancer Res
.
2012
Feb
;
72
(
4
):
917
27
.
[PubMed]
0008-5472
92.
Takaya
S
,
Saito
H
,
Ikeguchi
M
.
Upregulation of immune checkpoint molecules, PD-1 and LAG-3, on CD4+ and CD8+ T cells after gastric cancer surgery
.
Yonago Acta Med
.
2015
Mar
;
58
(
1
):
39
44
.
[PubMed]
0513-5710
93.
He
Y
,
Yu
H
,
Rozeboom
L
,
Rivard
CJ
,
Ellison
K
,
Dziadziuszko
R
, et al.
.
LAG-3 Protein Expression in Non-Small Cell lung cancer and its relationship with PD-1/PD-L1 and tumor-infiltrating lymphocytes
.
J Thorac Oncol
.
2017
May
;
12
(
5
):
814
23
.
[PubMed]
1556-0864
94.
Yang
ZZ
,
Kim
HJ
,
Villasboas
JC
,
Chen
YP
,
Price-Troska
T
,
Jalali
S
, et al.
.
Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma
.
Oncotarget
.
2017
May
;
8
(
37
):
61425
39
.
[PubMed]
1949-2553
95.
Wierz
M
,
Pierson
S
,
Guyonnet
L
,
Viry
E
,
Lequeux
A
,
Oudin
A
, et al.
.
Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia
.
Blood
.
2018
Apr
;
131
(
14
):
1617
21
.
[PubMed]
0006-4971
96.
Huang
RY
,
Francois
A
,
McGray
AR
,
Miliotto
A
,
Odunsi
K
.
Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer
.
OncoImmunology
.
2016
Oct
;
6
(
1
):
e1249561
.
[PubMed]
2162-4011
97.
Brignone
C
,
Escudier
B
,
Grygar
C
,
Marcu
M
,
Triebel
F
.
A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma
.
Clin Cancer Res
.
2009
Oct
;
15
(
19
):
6225
31
.
[PubMed]
1078-0432
98.
Wang-Gillam
A
,
Plambeck-Suess
S
,
Goedegebuure
P
,
Simon
PO
,
Mitchem
JB
,
Hornick
JR
, et al.
.
A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma
.
Invest New Drugs
.
2013
Jun
;
31
(
3
):
707
13
.
[PubMed]
0167-6997
99.
Romano
E
,
Michielin
O
,
Voelter
V
,
Laurent
J
,
Bichat
H
,
Stravodimou
A
, et al.
.
MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial
.
J Transl Med
.
2014
Apr
;
12
(
1
):
97
.
[PubMed]
1479-5876
100.
Brignone
C
,
Gutierrez
M
,
Mefti
F
,
Brain
E
,
Jarcau
R
,
Cvitkovic
F
, et al.
.
First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity
.
J Transl Med
.
2010
Jul
;
8
(
1
):
71
.
[PubMed]
1479-5876
101.
Ascierto
PA
,
Bono
P
,
Bhatia
S
,
Melero
I
,
Nyakas
MS
,
Svane
I
,
Larkin
J
,
Gomez-Roca
C
,
Schadendorf
D
,
Dummer
R
,
Marabelle
R
,
Hoeller
C
,
Maurer
M
,
Harbison
CT
,
Mitra
P
,
Suryawanshi
S
,
Thudium
K
,
Munoz Couselo
E
et al.
, : Annals of Oncology (
2017
) 28 (suppl_5): v605-v649. .
102.
Ascierto
PA
,
McArthur
GA
.
Checkpoint inhibitors in melanoma and early phase development in solid tumors: what’s the future
.
J Transl Med
.
2017
Aug
;
15
(
1
):
173
.
[PubMed]
1479-5876
103.
Lewis K, Hauschild A, Larkin J, Ribas A, Flaherty KT, McArthur GA, et al. Effect of concomitant dosing with acid-reducing agents and vemurafenib dose on survival in patients with BRAFV600 mutation-positive metastatic melanoma treated with vemurafenib ± cobimetinib. Eur J Cancer. 2019;116:45–55.
104.
Ascierto
PA
,
Melero
I
,
Bhatia
S
,
Bono
P
,
Sanborn
RE
,
Lipson
EJ
, et al.
.
Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy
.
J Clin Oncol
.
2017
;
35
15_suppl
:
9520
9520
. 0732-183X
105.
Monney
L
,
Sabatos
CA
,
Gaglia
JL
,
Ryu
A
,
Waldner
H
,
Chernova
T
, et al.
.
Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease
.
Nature
.
2002
Jan
;
415
(
6871
):
536
41
.
[PubMed]
0028-0836
106.
Li
Z
,
Ju
Z
,
Frieri
M
.
The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity
.
Allergy Asthma Proc
.
2013
Jan-Feb
;
34
(
1
):
e21
6
.
[PubMed]
1088-5412
107.
He
Y
,
Cao
J
,
Zhao
C
,
Li
X
,
Zhou
C
,
Hirsch
FR
.
TIM-3, a promising target for cancer immunotherapy
.
OncoTargets Ther
.
2018
Oct
;
11
:
7005
9
.
[PubMed]
1178-6930
108.
Meyers
JH
,
Sabatos
CA
,
Chakravarti
S
,
Kuchroo
VK
.
The TIM gene family regulates autoimmune and allergic diseases
.
Trends Mol Med
.
2005
Aug
;
11
(
8
):
362
9
.
[PubMed]
1471-4914
109.
Zhu
C
,
Anderson
AC
,
Schubart
A
,
Xiong
H
,
Imitola
J
,
Khoury
SJ
, et al.
.
The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity
.
Nat Immunol
.
2005
Dec
;
6
(
12
):
1245
52
.
[PubMed]
1529-2908
110.
Liu
Y
,
Shu
Q
,
Gao
L
,
Hou
N
,
Zhao
D
,
Liu
X
, et al.
.
Increased Tim-3 expression on peripheral lymphocytes from patients with rheumatoid arthritis negatively correlates with disease activity
.
Clin Immunol
.
2010
Nov
;
137
(
2
):
288
95
.
[PubMed]
1521-6616
111.
Morimoto
K
,
Hosomi
S
,
Yamagami
H
,
Watanabe
K
,
Kamata
N
,
Sogawa
M
, et al.
.
Dysregulated upregulation of T-cell immunoglobulin and mucin domain-3 on mucosal T helper 1 cells in patients with Crohn’s disease
.
Scand J Gastroenterol
.
2011
Jun
;
46
(
6
):
701
9
.
[PubMed]
0036-5521
112.
Kanzaki
M
,
Wada
J
,
Sugiyama
K
,
Nakatsuka
A
,
Teshigawara
S
,
Murakami
K
, et al.
.
Galectin-9 and T cell immunoglobulin mucin-3 pathway is a therapeutic target for type 1 diabetes
.
Endocrinology
.
2012
Feb
;
153
(
2
):
612
20
.
[PubMed]
0013-7227
113.
Li
S
,
Peng
D
,
He
Y
,
Zhang
H
,
Sun
H
,
Shan
S
, et al.
.
Expression of TIM-3 on CD4+ and CD8+ T cells in the peripheral blood and synovial fluid of rheumatoid arthritis
.
APMIS
.
2014
Oct
;
122
(
10
):
899
904
.
[PubMed]
1600-0463
114.
Das
M
,
Zhu
C
,
Kuchroo
VK
.
Tim-3 and its role in regulating anti-tumor immunity
.
Immunol Rev
.
2017
Mar
;
276
(
1
):
97
111
.
[PubMed]
0105-2896
115.
Fourcade
J
,
Sun
Z
,
Benallaoua
M
,
Guillaume
P
,
Luescher
IF
,
Sander
C
, et al.
.
Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients
.
J Exp Med
.
2010
Sep
;
207
(
10
):
2175
86
.
[PubMed]
0022-1007
116.
Sakuishi
K
,
Apetoh
L
,
Sullivan
JM
,
Blazar
BR
,
Kuchroo
VK
,
Anderson
AC
.
Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
.
J Exp Med
.
2010
Sep
;
207
(
10
):
2187
94
.
[PubMed]
0022-1007
117.
Yang
ZZ
,
Grote
DM
,
Ziesmer
SC
,
Niki
T
,
Hirashima
M
,
Novak
AJ
, et al.
.
IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma
.
J Clin Invest
.
2012
Apr
;
122
(
4
):
1271
82
.
[PubMed]
0021-9738
118.
Guo
Z
,
Cheng
D
,
Xia
Z
,
Luan
M
,
Wu
L
,
Wang
G
, et al.
.
Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer
.
J Transl Med
.
2013
Sep
;
11
(
1
):
215
.
[PubMed]
1479-5876
119.
Zhu
C
,
Sakuishi
K
,
Xiao
S
,
Sun
Z
,
Zaghouani
S
,
Gu
G
, et al.
.
An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction
.
Nat Commun
.
2015
Jan
;
6
(
1
):
6072
.
[PubMed]
2041-1723
120.
Lu
X
,
Yang
L
,
Yao
D
,
Wu
X
,
Li
J
,
Liu
X
, et al.
.
Tumor antigen-specific CD8+ T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer
.
Cell Immunol
.
2017
Mar
;
313
:
43
51
.
[PubMed]
0008-8749
121.
Piao
Y
,
Jin
X
: Analysis of TIM-3 as a therapeutic target in prostate cancer. Tumour Biol
2017
; 39:1010428317716628:101042831771662.
122.
Lee
J
,
Su
EW
,
Zhu
C
,
Hainline
S
,
Phuah
J
,
Moroco
JA
, et al.
.
Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways
.
Mol Cell Biol
.
2011
Oct
;
31
(
19
):
3963
74
.
[PubMed]
0270-7306
123.
Kang
CW
,
Dutta
A
,
Chang
LY
,
Mahalingam
J
,
Lin
YC
,
Chiang
JM
, et al.
.
Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer
.
Sci Rep
.
2015
Oct
;
5
(
1
):
15659
.
[PubMed]
2045-2322
124.
Nakae
S
,
Iikura
M
,
Suto
H
,
Akiba
H
,
Umetsu
DT
,
Dekruyff
RH
, et al.
.
TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells
.
Blood
.
2007
Oct
;
110
(
7
):
2565
8
.
[PubMed]
0006-4971
125.
Gleason
MK
,
Lenvik
TR
,
McCullar
V
,
Felices
M
,
O’Brien
MS
,
Cooley
SA
, et al.
.
Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9
.
Blood
.
2012
Mar
;
119
(
13
):
3064
72
.
[PubMed]
0006-4971
126.
Nakayama
M
,
Akiba
H
,
Takeda
K
,
Kojima
Y
,
Hashiguchi
M
,
Azuma
M
, et al.
.
Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation
.
Blood
.
2009
Apr
;
113
(
16
):
3821
30
.
[PubMed]
0006-4971
127.
DeKruyff
RH
,
Bu
X
,
Ballesteros
A
,
Santiago
C
,
Chim
YL
,
Lee
HH
, et al.
.
T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells
.
J Immunol
.
2010
Feb
;
184
(
4
):
1918
30
.
[PubMed]
0022-1767
128.
Steinman
RM
,
Banchereau
J
.
Taking dendritic cells into medicine. Nature. 2007; 449:419–426. Taking dendritic cells into medicine
.
Nature
.
2007
;
449
:
419
26
.
[PubMed]
0028-0836
129.
Chiba
S
,
Baghdadi
M
,
Akiba
H
,
Yoshiyama
H
,
Kinoshita
I
,
Dosaka-Akita
H
, et al.
.
Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1
.
Nat Immunol
.
2012
Sep
;
13
(
9
):
832
42
.
[PubMed]
1529-2908
130.
Patel
J
,
Bozeman
EN
,
Selvaraj
P
.
Taming dendritic cells with TIM-3: another immunosuppressive strategy used by tumors
.
Immunotherapy
.
2012
Dec
;
4
(
12
):
1795
8
.
[PubMed]
1750-743X
131.
Huang
YH
,
Zhu
C
,
Kondo
Y
,
Anderson
AC
,
Gandhi
A
,
Russell
A
, et al.
.
CEACAM1 regulates TIM-3-mediated tolerance and exhaustion
.
Nature
.
2015
Jan
;
517
(
7534
):
386
90
.
[PubMed]
0028-0836
132.
Banerjee
H
,
Kane
LP
.
Immune regulation by Tim-3
.
F1000 Res
.
2018
Mar
;
7
:
316
.
[PubMed]
2046-1402
133.
Du
W
,
Yang
M
,
Turner
A
,
Xu
C
,
Ferris
RL
,
Huang
J
, et al.
.
TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action
.
Int J Mol Sci
.
2017
Mar
;
18
(
3
):
E645
.
[PubMed]
1661-6596
134.
van de Weyer
PS
,
Muehlfeit
M
,
Klose
C
,
Bonventre
JV
,
Walz
G
,
Kuehn
EW
.
A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9
.
Biochem Biophys Res Commun
.
2006
Dec
;
351
(
2
):
571
6
.
[PubMed]
0006-291X
135.
Rangachari
M
,
Zhu
C
,
Sakuishi
K
,
Xiao
S
,
Karman
J
,
Chen
A
, et al.
.
Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion
.
Nat Med
.
2012
Sep
;
18
(
9
):
1394
400
.
[PubMed]
1078-8956
136.
Jan
M
,
Chao
MP
,
Cha
AC
,
Alizadeh
AA
,
Gentles
AJ
,
Weissman
IL
, et al.
.
Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker
.
Proc Natl Acad Sci USA
.
2011
Mar
;
108
(
12
):
5009
14
.
[PubMed]
0027-8424
137.
Jie
HB
,
Gildener-Leapman
N
,
Li
J
,
Srivastava
RM
,
Gibson
SP
,
Whiteside
TL
, et al.
.
Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients
.
Br J Cancer
.
2013
Nov
;
109
(
10
):
2629
35
.
[PubMed]
0007-0920
138.
Yan
J
,
Zhang
Y
,
Zhang
JP
,
Liang
J
,
Li
L
,
Zheng
L
.
Tim-3 expression defines regulatory T cells in human tumors
.
PLoS One
.
2013
;
8
(
3
):
e58006
.
[PubMed]
1932-6203
139.
Japp
AS
,
Kursunel
MA
,
Meier
S
,
Mälzer
JN
,
Li
X
,
Rahman
NA
, et al.
.
Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression
.
Cancer Immunol Immunother
.
2015
Nov
;
64
(
11
):
1487
94
.
[PubMed]
0340-7004
140.
Thommen
DS
,
Schreiner
J
,
Müller
P
,
Herzig
P
,
Roller
A
,
Belousov
A
, et al.
.
Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors
.
Cancer Immunol Res
.
2015
Dec
;
3
(
12
):
1344
55
.
[PubMed]
2326-6066
141.
Cheng
G
,
Li
M
,
Wu
J
,
Ji
M
,
Fang
C
,
Shi
H
, et al.
.
Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis
.
Int J Clin Exp Pathol
.
2015
Aug
;
8
(
8
):
9452
7
.
[PubMed]
1936-2625
142.
Cai
C
,
Xu
YF
,
Wu
ZJ
,
Dong
Q
,
Li
MY
,
Olson
JC
, et al.
.
Tim-3 expression represents dysfunctional tumor infiltrating T cells in renal cell carcinoma
.
World J Urol
.
2016
Apr
;
34
(
4
):
561
7
.
[PubMed]
0724-4983
143.
Xie
J
,
Wang
J
,
Cheng
S
,
Zheng
L
,
Ji
F
,
Yang
L
, et al.
.
Expression of immune checkpoints in T cells of esophageal cancer patients
.
Oncotarget
.
2016
Sep
;
7
(
39
):
63669
78
.
[PubMed]
1949-2553
144.
Baitsch
L
,
Baumgaertner
P
,
Devêvre
E
,
Raghav
SK
,
Legat
A
,
Barba
L
, et al.
.
Exhaustion of tumor-specific CD8⁺ T cells in metastases from melanoma patients
.
J Clin Invest
.
2011
Jun
;
121
(
6
):
2350
60
.
[PubMed]
0021-9738
145.
Gao
X
,
Zhu
Y
,
Li
G
,
Huang
H
.
Zhang, Wang F, Sun J, Yang Q, Zhang X, Lu B: TIM-3 expression characterizes regulatory T cells in tumour tissues and is associated with lung cancer progression
.
PLoS One
.
2012
;
7
:
e30676
.
[PubMed]
1932-6203
146.
Sakuishi
K
,
Ngiow
SF
,
Sullivan
JM
,
Teng
MW
,
Kuchroo
VK
,
Smyth
MJ
, et al.
.
TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer
.
OncoImmunology
.
2013
Apr
;
2
(
4
):
e23849
.
[PubMed]
2162-4011
147.
Wiener
Z
,
Kohalmi
B
,
Pocza
P
,
Jeager
J
,
Tolgyesi
G
,
Toth
S
, et al.
.
TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells
.
J Invest Dermatol
.
2007
Apr
;
127
(
4
):
906
14
.
[PubMed]
0022-202X
148.
Kikushige
Y
,
Shima
T
,
Takayanagi
S
,
Urata
S
,
Miyamoto
T
,
Iwasaki
H
, et al.
.
TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells
.
Cell Stem Cell
.
2010
Dec
;
7
(
6
):
708
17
.
[PubMed]
1934-5909
149.
Huang
X
,
Bai
X
,
Cao
Y
,
Wu
J
,
Huang
M
,
Tang
D
, et al.
.
Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion
.
J Exp Med
.
2010
Mar
;
207
(
3
):
505
20
.
[PubMed]
0022-1007
150.
Cao
Y
,
Zhou
X
,
Huang
X
,
Li
Q
,
Gao
L
,
Jiang
L
, et al.
.
Tim-3 expression in cervical cancer promotes tumor metastasis
.
PLoS One
.
2013
;
8
(
1
):
e53834
.
[PubMed]
1932-6203
151.
Shang
Y
,
Li
Z
,
Li
H
,
Xia
H
,
Lin
Z
.
TIM-3 expression in human osteosarcoma: correlation with the expression of epithelial-mesenchymal transition-specific biomarkers
.
Oncol Lett
.
2013
Aug
;
6
(
2
):
490
4
.
[PubMed]
1792-1074
152.
Komohara
Y
,
Morita
T
,
Annan
DA
,
Horlad
H
,
Ohnishi
K
,
Yamada
S
, et al.
.
The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas
.
Cancer Immunol Res
.
2015
Sep
;
3
(
9
):
999
1007
.
[PubMed]
2326-6066
153.
Gonçalves Silva
I
,
Gibbs
BF
,
Bardelli
M
,
Varani
L
,
Sumbayev
VV
.
Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells
.
Oncotarget
.
2015
Oct
;
6
(
32
):
33823
33
.
[PubMed]
1949-2553
154.
Koyama
S
,
Akbay
EA
,
Li
YY
,
Herter-Sprie
GS
,
Buczkowski
KA
,
Richards
WG
, et al.
.
Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints
.
Nat Commun
.
2016
Feb
;
7
(
1
):
10501
.
[PubMed]
2041-1723
155.
Yu
X
,
Harden
K
,
Gonzalez
LC
,
Francesco
M
,
Chiang
E
,
Irving
B
, et al.
.
The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells
.
Nat Immunol
.
2009
Jan
;
10
(
1
):
48
57
.
[PubMed]
1529-2908
156.
Johnston
RJ
,
Comps-Agrar
L
,
Hackney
J
,
Yu
X
,
Huseni
M
,
Yang
Y
, et al.
.
The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function
.
Cancer Cell
.
2014
Dec
;
26
(
6
):
923
37
.
[PubMed]
1535-6108
157.
Solomon
BL
,
Garrido-Laguna
I
.
TIGIT: a novel immunotherapy target moving from bench to bedside
.
Cancer Immunol Immunother
.
2018
Nov
;
67
(
11
):
1659
67
.
[PubMed]
0340-7004
158.
Boles
KS
,
Vermi
W
,
Facchetti
F
,
Fuchs
A
,
Wilson
TJ
,
Diacovo
TG
,
Cella
M
,
Colonna
M
: A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur. J. Immunol
2009
; 39: 695–703 11.
159.
Levin
SD
,
Taft
DW
,
Brandt
CS
,
Bucher
C
,
Howard
ED
,
Chadwick
EM
, et al.
.
Vstm3 is a member of the CD28 family and an important modulator of T-cell function
.
Eur J Immunol
.
2011
Apr
;
41
(
4
):
902
15
.
[PubMed]
0014-2980
160.
Lozano
E
,
Dominguez-Villar
M
,
Kuchroo
V
,
Hafler
DA
.
The TIGIT/CD226 axis regulates human T cell function
.
J Immunol
.
2012
Apr
;
188
(
8
):
3869
75
.
[PubMed]
0022-1767
161.
Joller
N
,
Lozano
E
,
Burkett
PR
,
Patel
B
,
Xiao
S
,
Zhu
C
, et al.
.
Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses
.
Immunity
.
2014
Apr
;
40
(
4
):
569
81
.
[PubMed]
1074-7613
162.
Manieri
NA
,
Chiang
EY
,
Grogan
JL
.
TIGIT: A Key Inhibitor of the Cancer Immunity Cycle
.
Trends Immunol
.
2017
Jan
;
38
(
1
):
20
8
.
[PubMed]
1471-4906
163.
Stengel
KF
,
Harden-Bowles
K
,
Yu
X
,
Rouge
L
,
Yin
J
,
Comps-Agrar
L
, et al.
.
Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering
.
Proc Natl Acad Sci USA
.
2012
Apr
;
109
(
14
):
5399
404
.
[PubMed]
0027-8424
164.
Casado
JG
,
Pawelec
G
,
Morgado
S
,
Sanchez-Correa
B
,
Delgado
E
,
Gayoso
I
, et al.
.
Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines
.
Cancer Immunol Immunother
.
2009
Sep
;
58
(
9
):
1517
26
.
[PubMed]
0340-7004
165.
Stanietsky
N
,
Rovis
TL
,
Glasner
A
,
Seidel
E
,
Tsukerman
P
,
Yamin
R
, et al.
.
Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR
.
Eur J Immunol
.
2013
Aug
;
43
(
8
):
2138
50
.
[PubMed]
0014-2980
166.
Anderson
AC
,
Joller
N
,
Kuchroo
VK
.
Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation
.
Immunity
.
2016
May
;
44
(
5
):
989
1004
.
[PubMed]
1074-7613
167.
Stanietsky
N
,
Simic
H
,
Arapovic
J
,
Toporik
A
,
Levy
O
,
Novik
A
, et al.
.
The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity
.
Proc Natl Acad Sci USA
.
2009
Oct
;
106
(
42
):
17858
63
.
[PubMed]
0027-8424
168.
Liu
S
,
Zhang
H
,
Li
M
,
Hu
D
,
Li
C
,
Ge
B
, et al.
.
Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells
.
Cell Death Differ
.
2013
Mar
;
20
(
3
):
456
64
.
[PubMed]
1350-9047
169.
Li
M
,
Xia
P
,
Du
Y
,
Liu
S
,
Huang
G
,
Chen
J
, et al.
.
T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling
.
J Biol Chem
.
2014
Jun
;
289
(
25
):
17647
57
.
[PubMed]
0021-9258
170.
Fuhrman
CA
,
Yeh
WI
,
Seay
HR
,
Saikumar Lakshmi
P
,
Chopra
G
,
Zhang
L
, et al.
.
Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226
.
J Immunol
.
2015
Jul
;
195
(
1
):
145
55
.
[PubMed]
0022-1767
171.
Kurtulus
S
,
Sakuishi
K
,
Ngiow
SF
,
Joller
N
,
Tan
DJ
,
Teng
MW
, et al.
.
TIGIT predominantly regulates the immune response via regulatory T cells
.
J Clin Invest
.
2015
Nov
;
125
(
11
):
4053
62
.
[PubMed]
0021-9738
172.
Chan
LL
,
Cheung
BK
,
Li
JC
,
Lau
AS
.
A role for STAT3 and cathepsin S in IL-10 down-regulation of IFN-gamma-induced MHC class II molecule on primary human blood macrophages
.
J Leukoc Biol
.
2010
Aug
;
88
(
2
):
303
11
.
[PubMed]
0741-5400
173.
Chauvin
JM
,
Pagliano
O
,
Fourcade
J
,
Sun
Z
,
Wang
H
,
Sander
C
, et al.
.
TIGIT and PD-1 impair tumor antigen-specific CD8⁺ T cells in melanoma patients
.
J Clin Invest
.
2015
May
;
125
(
5
):
2046
58
.
[PubMed]
0021-9738
174.
Lee
WJ
,
Lee
YJ
,
Choi
ME
,
Yun
KA
,
Won
CH
,
Lee
MW
, et al.
.
LAG-3 and TIGIT protein expressions in cutaneous melanoma and their relationship with PD-1 tumour-infiltrating lymphocytes
.
J Am Acad Dermatol
.
2019
;
9622
:
30426
8
.0190-9622
175.
Kong
Y
,
Zhu
L
,
Schell
TD
,
Zhang
J
,
Claxton
DF
,
Ehmann
WC
, et al.
.
T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-Cell Exhaustion and Poor Clinical Outcome in AML Patients
.
Clin Cancer Res
.
2016
Jun
;
22
(
12
):
3057
66
.
[PubMed]
1078-0432
176.
He
R
,
Hou
S
,
Liu
C
,
Zhang
A
,
Bai
Q
,
Han
M
, et al.
.
Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection
.
Nature
.
2016
Aug
;
537
(
7620
):
412
28
.
[PubMed]
0028-0836
177.
Im
SJ
,
Hashimoto
M
,
Gerner
MY
,
Lee
J
,
Kissick
HT
,
Burger
MC
, et al.
.
Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy
.
Nature
.
2016
Sep
;
537
(
7620
):
417
21
.
[PubMed]
0028-0836
178.
Zhao
Y
,
Yang
W
,
Huang
Y
,
Cui
R
,
Li
X
,
Li
B
.
Evolving Roles for Targeting CTLA-4 in Cancer Immunotherapy
.
Cell Physiol Biochem
.
2018
;
47
(
2
):
721
34
.
[PubMed]
1015-8987
179.
Mitsuiki
N
,
Schwab
C
,
Grimbacher
B
.
What did we learn from CTLA-4 insufficiency on the human immune system
.
Immunol Rev
.
2019
Jan
;
287
(
1
):
33
49
.
[PubMed]
0105-2896
180.
Esensten
JH
,
Helou
YA
,
Chopra
G
,
Weiss
A
,
Bluestone
JA
.
CD28 Costimulation: From Mechanism to Therapy
.
Immunity
.
2016
May
;
44
(
5
):
973
88
.
[PubMed]
1074-7613
181.
Wolchok
JD
,
Saenger
Y
.
The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation
.
Oncologist
.
2008
;
13
Suppl 4
:
2
9
.
[PubMed]
1083-7159
182.
Buchbinder
EI
,
Desai
A
.
CTLA-4 and PD-1 pathways: similarities, differences, and implications of their Inhibition
.
Am J Clin Oncol
.
2016
Feb
;
39
(
1
):
98
106
.
[PubMed]
0277-3732
183.
Boussiotis
VA
.
Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway
.
N Engl J Med
.
2016
Nov
;
375
(
18
):
1767
78
.
[PubMed]
0028-4793
184.
Freeman
GJ
,
Long
AJ
,
Iwai
Y
,
Bourque
K
,
Chernova
T
,
Nishimura
H
, et al.
.
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
.
J Exp Med
.
2000
Oct
;
192
(
7
):
1027
34
.
[PubMed]
0022-1007
185.
Robainas
M
,
Otano
R
,
Bueno
S
,
Ait-Oudhia
S
.
Understanding the role of PD-L1/PD1 pathway blockade and autophagy in cancer therapy
.
OncoTargets Ther
.
2017
Mar
;
10
:
1803
7
.
[PubMed]
1178-6930
186.
Ribas
A
,
Wolchok
JD
.
Cancer immunotherapy using checkpoint blockade
.
Science
.
2018
Mar
;
359
(
6382
):
1350
5
.
[PubMed]
0036-8075
You do not currently have access to this content.