Background: Pseudomonas aeruginosa commonly causes nosocomial bloodstream infections and the emergence of a variety of β-lactamases (BLs) is worrying. In 5 hospitals in Belo Horizonte, Brazil, the presence of phenotypes encoding BL genes was established and the genetic diversity of the P. aeruginosa strains recovered from bloodstream infections was analyzed. Materials and Methods: The isolates were investigated using a disk diffusion (DD) method and the Etest®, for encoding metallo-β-lactamases (MBLs), oxacillinases and cephalosporinases. Genes and genetic diversity were evaluated by random amplified polymorphic DNA (RAPD) genotyping and enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results: Twelve strains (30%) were positive for MBLs by Etest and DD, 15 were cephalosporinase-positive and 87.5% were positive for blaSPM-1 and blaVIM-1. Twenty-three strains (57.5%) were grouped into profile A, 32.5% into profile B and 10% into profile C by RAPD genotyping. ERIC-PCR revealed a varying degree of similarity between strains, ranging from 45 to 100%. Conclusions: The results suggest distinct clonal populations in the 5 hospitals studied, indicating a potentially problematic epidemiological situation in Belo Horizonte, Brazil.

1.
Zilberberg MD, Shorr AF: Prevalence of multidrug-resistant Pseudomonasaeruginosa and carbapenem-resistant enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 2013;8:559-563.
[PubMed]
2.
Walsh TR, Toleman MA, Hryniewicz W, Bennett PM, Jones RN: Evolution of an integron carrying blaVIM-2 in Eastern Europe: report from the SENTRY Antimicrobial Surveillance Program. J Antimicrob Chemother 2003;52:116-119.
[PubMed]
3.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB,Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-281.
[PubMed]
4.
Queenan AM, Bush K: Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007;20:440-458.
[PubMed]
5.
Bowers DR, Liew YX, Lye DC, Kwa AL, Hsu LY, Tam VH: Outcomes of appropriate empiric combination versus monotherapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2013;57;1270-1274.
[PubMed]
6.
Hammami S, Boutiba-Ben Boubaker I, Ghozzi R, Saidani M, Amine S, Ben Redjeb S: Nosocomial outbreak of imipenem-resistant Pseudomonas aeruginosa producing VIM-2 metallo-beta-lactamase in a kidney transplantation unit. Diagn Pathol 2011;6:106.
[PubMed]
7.
Yan JJ, Hsueh PR, Ko WC, Luh KT, Tsai SH, Wu HM, Wu JJ: Metallo-beta-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother 2001;45:2224-2228.
[PubMed]
8.
Speijer H, Savelkoul PHM, Bonten MJ, Stobberingh EE, Tjhie JHT: Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit. J Clin Microbiol 1999;37:3654-3661.
[PubMed]
9.
Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing, 17th informational supplement, 2011.
10.
Martins HS, Bomfim MRQ, França RO, Farias LM, Carvalho MAR, Serufo JC, Santos SG: Resistance markers and genetic diversity in Acinetobacter baumannii strains recovered from nosocomial bloodstream infections. Int J Environ Res Public Health 2014;11:1465-1478.
[PubMed]
11.
Dalmarco EM, Blatt SL, Córdova CMM: Identificação laboratorial de β-lactamases de espectro estendido (ESBLs). Ver Bras Anal Clin 2006;38:171-177.
12.
Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y: Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005;49:4485-4491.
[PubMed]
13.
Coudron PE, Moland ES, Thomson KS: Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol 2000;38:1791-1796.
[PubMed]
14.
Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SGB, Livermore DM: Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Ag 2006;27:351-353.
[PubMed]
15.
Silbert S, Pfaller MA, Hollis RJ, Barth AL, Sader HS: Evaluation of three molecular typing techniques for nonfermentative Gram-negative bacilli. Infect Control Hosp Epidemiol 2004;25:847-851.
[PubMed]
16.
Versalovic J, Koeuth T, Lupski JR: Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991;19:6823-6831.
[PubMed]
17.
Dabrowski W, Czekajlo-Kolodziej U, Medrala D, Giedrys-Kalemba S: Optimisation of AP-PCR fingerprinting discriminatory power for clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol Lett 2003;218:51-57.
[PubMed]
18.
Sanguinetti CJ, Dias Neto E, Simpson AJG: Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotech 1994;17:915-918.
[PubMed]
19.
Ribeiro J, Mendes RE, Domingos R, Franca E, Silbert S, Jones RN, Sader HS: Microbiological and epidemiological characterization of imipenem-resistant Pseudomonas aeruginosa strains from a Brazilian tertiary hospital: report from the SENTRY Antimicrobial Surveillance Program. J Chemother 2006;18:461-467.
[PubMed]
20.
Machado GM, Lago A, Fuentefria SR, Fuentefria DB: Occurrence and the susceptibility to antimicrobial agents in Pseudomonas aeruginosa and Acinetobacter sp. at a tertiary hospital in southern Brazil. Rev Soc Bras Med Trop 2011;44:168-172.
[PubMed]
21.
Llaca-Díaz JM, Mendonza-Olazarán S, Camacho-Ortiz A, Flores S, Garza-González E: One-year surveillance of ESKAPE pathogens in an intensive care unit in Monterrey, Mexico. Chemotherapy 2012;58:475-481.
[PubMed]
22.
Cornaglia G, Giamarellou H, Rossolini GM: Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis 2011;11:381-393.
[PubMed]
23.
Livermore DM: Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;34:634-640.
[PubMed]
24.
Falagas ME, Rafailidis PI, Matthaiou DK: Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resist Updat 2010;13:132-138.
[PubMed]
25.
Qu T, Zhang J, Wang J,Tao J,Yu Y, Chen Y, Zhou J, Li L: Evaluation of phenotypic tests for detection of metallo-β-lactamase-producing Pseudomonas aeruginosa strains in China. J Clin Microbiol 2009;47:1136-1142.
[PubMed]
26.
Picão RC, Carrara-Marroni FE, Gales AC, Venâncio EJ, Xavier DE, Tognim MC, Pelavo JS: Metallo-β-lactamase-production in meropenem susceptible Pseudomonas aeruginosa isolates: risk for silent spread. Mem Inst Oswaldo Cruz 2012;107:747-751.
[PubMed]
27.
Speert DP: Molecular epidemiology of Pseudomonas aeruginosa. Front Biosci 2002;1:354-361.
[PubMed]
28.
Cezario RC, Duarte De Morais L, Ferreira JC, Costa-Pinto RM, da Costa Darini AL, Gontijo-Filho PP: Nosocomial outbreak by imipenem-resistant metallo-beta-lactamase-producing Pseudomonas aeruginosa in an adult intensive care unit in a Brazilian teaching hospital. Enferm Infecc Microbiol Clin 2009;27:269-274.
[PubMed]
29.
Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, Walsh TR: Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 2002;50:673-679.
[PubMed]
30.
Franco MR, Caiaffa-Filho HH, Burattini MN, Rossi F: Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics 2010;65:825-829.
[PubMed]
You do not currently have access to this content.