Introduction: Here we compare differences in the presence of telomeric signals (tDNA-FISH) among karyotypes of taxa having different whole-arm chromosomal rearrangements under the assumption of their participation in differentiation/integration processes during karyotype evolution. We analyzed the cytogenetic peculiarities of Robertsonian-like (centromeric) and tandem (telomere-involving) rearrangements using examples of the authors’ recent research on comparative cytogenetics of mammals. New data on intra- and interspecific karyotype variation helped understand the nature of chromosomal rearrangements and their molecular features within and between species in two target mammalian taxa: representatives of two genera from two orders (insectivores and rodents). Methods: To detect telomeric repeats in karyotypes of representatives of the Eurasian genus Sorex and Ethiopian endemic Stenocephalemys, G-banded metaphase chromosomes were hybridized in situ with a fluorescein-conjugated peptide nucleic acid probe and 5′-TAMRA-labeled (CCCTAA)4 oligonucleotides. Results: We compared the location of a molecular chromosomal trait – telomeric sequences – among karyotypes of taxonomically distinct individuals having different types of whole-arm chromosomal rearrangements. Along with the regular terminal location of the telomeric signal on all chromosomes, displays of interstitial telomeric sequences (ITSs) were detectable. This pattern was typical for a studied shrew specimen whose karyotype corresponded to a natural interracial F1 hybrid. This finding doubles the number (known to date) of S. araneus race-specific metacentrics having an identified telomeric signal. In karyotypes of Stenocephalemys specimens, we revealed individual differences in autosomes corresponding to tandem fusion rearrangements, possibly species-specific, for the first time. No intrachromosomal telomeric signal expected in this case was detectable in autosomes, whereas we registered ITSs in pericentromeric regions on X chromosomes near a short, completely heterochromatic (additional) arm. Conclusion: The new data indicate a heterogeneous distribution of the telomeric signal (tDNA-FISH) on mitotic chromosomes that are involved in (typical for mammals) whole-arm chromosomal variation, thus representing two models of karyotype evolution: Robertsonian polymorphism and tandem fusions. In the analyzed examples of whole-arm chromosomal rearrangements, displays of the centromeric ITS signal more likely represent an integral feature of cytogenetic relatedness within a species (chromosomal races) or between species (in a genus or group of genera) than differentiation of taxa.

1.
Graphodatsky
A
,
Perelman
P
,
O’Brien
S
.
Atlas of mammalian chromosomes
. 2nd ed.
NY
:
Wiley
;
2020
.
2.
Dobigny
G
,
Britton-Davidian
J
,
Robinson
TJ
.
Chromosomal polymorphism in mammals: an evolutionary perspective
.
Biol Rev
.
2017
;
92
(
1
):
1
21
.
3.
Pavlova
SV
,
Searle
JB
.
Chromosomes and speciation in mammals
. In:
Zachos
F
,
Asher
R
, editors.
Mammalian evolution, diversity and systematics [Internet]
.
Berlin, Boston
:
De Gruyter
;
2018
. p.
17
38
.
4.
Searle
JB
,
Polly
PD
,
Zima
J
.
Shrews, chromosomes and speciation (Cambridge studies in morphology and molecules: new paradigms in evolutionary bio)
.
Cambridge
:
Cambridge University Press
;
2019
; p.
1
476
.
5.
Bulatova
NS
,
Nadzhafova
RS
,
Kostin
DS
,
Lavrenchenko
LA
,
Spangenberg
VE
.
Tandem fusions in evolution of Ethiopian endemic rodents
.
Russ J Genet
.
2020
;
56
(
10
):
1255
9
.
6.
Ford
CE
,
Hamerton
JL
.
Chromosome polymorphism in the common shrew, Sorex araneus
.
Symp Zool Soc
.
1970
;
26
:
223
36
.
7.
Searle
JB
,
Fedyk
S
,
Fredga
K
,
Hausser
J
,
Volobouev
VT
.
Nomenclature for the chromosomes of the common shrew (Sorex araneus)
.
Comp Cytogenet
.
2010
;
4
(
1
):
87
96
.
8.
Bryja
J
,
Meheretu
Y
,
Šumbera
R
,
Lavrenchenko
LA
.
Annotated checklist, taxonomy and distribution of rodents in Ethiopia
.
Folia Zool
.
2019
;
68
(
3
):
117
213
.
9.
Corti
M
,
Scanzani
A
,
Rossi
AR
,
Civitelli
MV
,
Bekele
A
,
Capanna
E
.
Karyotypic and genetic divergence in the Ethiopian Myomys - Stenocephalemys complex (Mammalia, Rodentia)
.
Ital J Zool
.
1999
;
66
(
4
):
341
9
.
10.
Lavrenchenko
LA
,
Milishnikov
AN
,
Aniskin
VM
,
Warshavsky
AA
.
Systematics and phylogeny of the genus Stenocephalemys Frick, 1914 (Rodentia, Muridae): a multidisciplinary approach
.
De Gruyter Brill
.
1999
;
63
(
4
):
475
94
.
11.
Seabright
M
.
A rapid banding technique for human chromosomes
.
Lancet
.
1971
;
2
(
7731
):
971
2
.
12.
Sumner
AT
.
A simple technique for demonstrating centromeric heterochromatin
.
Exp Cell Res
.
1972
;
75
(
1
):
304
6
.
13.
Stepakov
A
,
Galkina
S
,
Bogomaz
D
,
Gaginskaya
E
,
Saifitdinova
A
.
Modified synthesis of 6-carboxyfluorescein (6-FAM): application to probe labeling for conventional cytogenetics
.
Br J Appl Sci Technol
.
2015
;
7
(
4
):
423
8
.
14.
Biltueva
L
,
Vorobieva
N
,
Perelman
P
,
Trifonov
V
,
Volobouev
V
,
Panov
V
, et al
.
Karyotype evolution of Eulipotyphla (Insectivora): the genome homology of seven Sorex species revealed by comparative chromosome painting and banding data
.
Cytogenet Genome Res
.
2011
;
135
(
1
):
51
64
.
15.
Zhdanova
NS
,
Rogozina
YI
,
Minina
YM
,
Borodin
PM
,
Rubtsov
NB
.
Telomeric DNA allocation in chromosomes of common shrew (Sorex araneus, Eulipotyphla)
.
Cell Tissue biol
.
2009
;
3
(
4
):
323
9
.
16.
Biltueva
L
,
Vorobieva
N
.
Chromosome evolution in Eulipotyphla
.
Cytogenet Genome Res
.
2012
;
137
(
2–4
):
154
64
.
17.
Zhdanova
NS
,
Karamisheva
TV
,
Minina
J
,
Astakhova
NM
,
Lansdorp
P
,
Kammori
M
, et al
.
Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granarius
.
Chromosom Res
.
2005
;
13
(
6
):
617
25
.
18.
Zhdanova
NS
,
Minina
JM
,
Karamysheva
T
,
Rubtsov
N
.
The distributions of telomeric and ribosomal DNA on the chromosomes of two closely related species, Sorex araneus and Sorex granarius (Soricidae, Eulipotyphla)
.
Russ J Theriol
.
2007
;
6
(
1
):
007
13
.
19.
Schaeffer
SW
.
Muller “elements” in Drosophila: how the search for the genetic basis for speciation led to the birth of comparative genomics
.
Genetics
.
2018
;
210
(
1
):
3
13
.
20.
Muller
HJ
.
Bearing of the Drosophila work on systematics
.
The new systematics
.
1940
; p.
185
268
.
21.
Vicari
MR
,
Bruschi
DP
,
Cabral-de-Mello
DC
,
Nogaroto
V
.
Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution
.
Genet Mol Biol
.
2022
;
45
(
3 Suppl 1
):
e20220071
.
22.
Mizerovská
D
,
Mikula
O
,
Meheretu
Y
,
Bartáková
V
,
Bryjová
A
,
Kostin
DS
, et al
.
Integrative taxonomic revision of the Ethiopian endemic rodent genus Stenocephalemys (Muridae: Murinae: Praomyini) with the description of two new species
.
J Vertebr Biol
.
2020
;
69
(
2
):
20031.1
.
23.
Multani
AS
,
Ozen
M
,
Furlong
CL
,
Zhao
Y-J
,
Hsu
TC
,
Pathak
S
.
Heterochromatin and interstitial telomeric DNA homology
.
Chromosoma
.
2001
;
110
(
3
):
214
20
.
You do not currently have access to this content.