Introduction: Thamnophilidae (typical antbirds) are a diverse family of insectivorous passerine birds restricted to neotropical forests, encompassing 237 species, of which only 5 have been studied cytogenetically. Methods: To investigate the chromosomal evolution of this group, we applied classical and molecular cytogenetic techniques, including conventional staining, C-banding, and fluorescence in situ hybridization with probes for repetitive telomeric sequences (TTAGGG)5 and 18S rDNA, in two representative species: Thamnophilus caerulescens and Thamnophilus ruficapillus. Results: The karyotypes of T. caerulescens and T. ruficapillus comprise 80 and 82 chromosomes, respectively. In addition to a possible fission in T. ruficapillus, morphological differences suggest the occurrence of pericentric inversions in the chromosomes of this species. The patterns of constitutive heterochromatin differed between the species: both showed centromeric markings and heterochromatin on the W chromosome, but T. ruficapillus also exhibited interstitial markings on seven chromosomal pairs. Both species presented interstitial telomeric sequences (ITSs) in the first seven pairs, which corresponded to constitutive heterochromatin in T. ruficapillus. The 18S rDNA probe hybridized to a single pair of microchromosomes in T. caerulescens and two pairs in T. ruficapillus. Conclusion: This study revealed novel patterns of constitutive heterochromatin in T. ruficapillus and ITSs in both species, which have not been previously observed in Passeriformes. The correspondence between constitutive heterochromatin and ITSs in T. ruficapillus suggests that these sequences are composed of repetitive DNA highly similar to telomeric sequences and/or are remnants of pericentric inversions, whereas in T. caerulescens, other mechanisms seem to be involved. The differences in observed patterns highlight distinct chromosomal evolution between these species, emphasizing the diversity within the family Thamnophilidae and the genus Thamnophilus, in contrast to the conserved patterns typically observed in the class Aves.

1.
Irestedt
M
,
Fjeldså
J
,
Nylander
JA
,
Ericson
PG
.
Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors
.
BMC Evol Biol
.
2004
;
4
(
1
):
23
.
2.
Irestedt
M
,
Fjeldså
J
,
Johansson
US
,
Ericson
PGP
.
Systematic relationships and biogeography of the tracheophone suboscines (Aves: passeriformes)
.
Mol Phylogenet Evol
.
2002
;
23
(
3
):
499
512
.
3.
Winkler
DW
,
Billerman
SM
,
Lovette
IJ
.
Typical antbirds (Thamnophilidae)
. In:
Billerman
SM
,
Keeney
BK
,
Rodewald
PG
,
Schulenberg
TS
, editors.
Birds of the World
.
Cornell Lab of Ornithology
;
2020
.
4.
Degrandi
TM
,
Barcellos
SA
,
Costa
AL
,
Garnero
ADV
,
Hass
I
,
Gunski
RJ
.
Introducing the bird chromosome database: an overview of cytogenetic studies in birds
.
Cytogenet Genome Res
.
2020
;
160
(
4
):
199
205
.
5.
De Lucca
EJ
.
Karyotypes of fourteen species of birds of the orders: Cuculiformes, Galliformes, passeriformes and tinamiformes
.
Braz J Med Biol Res
.
1974
;
7
:
253
63
.
6.
De Lucca
EJ
,
Chamma
L
.
Estudo do complemento cromossômico de 11 espécies de aves das ordens Columbiformes, Passeriformes e Tinamiformes
.
Rev Bras Pesqui Med Biol
.
1977
;
10
(
2
):
97
105
.
7.
Ledesma
MA
,
Garnero
AV
,
Gunski
RJ
.
Analise do cariótipo de duas espécies da família Formicariidae (Aves, Passeriformes)
.
Ararajuba
.
2002
;
10
:
15
9
.
8.
Ribas
TFA
,
Pieczarka
JC
,
Griffin
DK
,
Kiazim
LG
,
Nagamachi
CY
,
O Brien
PCM
, et al
.
Analysis of multiple chromosomal rearrangements in the genome of Willisornis vidua using BAC-FISH and chromosome painting on a supposed conserved karyotype
.
BMC Ecol Evol
.
2021
;
21
(
1
):
34
.
9.
Burt
DW
.
Origin and evolution of avian microchromosomes
.
Cytogenet Genome Res
.
2002
;
96
(
1–4
):
97
112
.
10.
Gregory
TR
.
The evolution of the genome
.
San Diego CA USA
:
Elsevier Academic Press
;
2005
.
11.
Wessler
SR
.
Transposable elements and the evolution of eukaryotic genomes
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
47
):
17600
1
.
12.
Lynch
M
,
Walsh
B
.
The origins of genome architecture
.
Sunderland, MA
:
Sinauer associates
;
2007
.
13.
Ellegren
H
.
Evolutionary stasis: the stable chromosomes of birds
.
Trends Ecol Evol
.
2010
;
25
(
5
):
283
91
.
14.
Braun
EL
,
Cracraft
J
,
Houde
P
.
Avian genomics in ecology and evolution
.
Cham
:
Springer International Publishing
;
2019
.
15.
Voss
SR
,
Kump
DK
,
Putta
S
,
Pauly
N
,
Reynolds
A
,
Henry
RJ
, et al
.
Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes
.
Genome Res
.
2011
;
21
(
8
):
1306
12
.
16.
Uno
Y
,
Nishida
C
,
Tarui
H
,
Ishishita
S
,
Takagi
C
,
Nishimura
O
, et al
.
Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping
.
PLoS One
.
2012
;
7
(
12
):
e53027
.
17.
de Oliveira
EHC
,
Habermann
FA
,
Lacerda
O
,
Sbalqueiro
IJ
,
Wienberg
J
,
Müller
S
.
Chromosome reshuffling in birds of prey: the karyotype of the world’s largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus)
.
Chromosoma
.
2005
;
114
(
5
):
338
43
.
18.
Nanda
I
,
Karl
E
,
Griffin
DK
,
Schartl
M
,
Schmid
M
.
Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting
.
Cytogenet Genome Res
.
2007
;
117
(
1–4
):
43
53
.
19.
Damas
J
,
O’Connor
R
,
Farré
M
,
Lenis
VPE
,
Martell
HJ
,
Mandawala
A
, et al
.
Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set
.
Genome Res
.
2017
;
27
(
5
):
875
84
.
20.
Graw
J
.
Epigenetik. Genetik
.
2015
.
21.
Daniels
LM
,
Delany
ME
.
Molecular and cytogenetic organization of the 5S ribosomal DNA array in chicken (Gallus gallus)
.
Chromosome Res
.
2003
;
11
(
4
):
305
17
.
22.
Dyomin
AG
,
Koshel
EI
,
Kiselev
AM
,
Saifitdinova
AF
,
Galkina
SA
,
Fukagawa
T
, et al
.
Chicken rRNA gene cluster structure
.
PLoS One
.
2016
;
11
(
6
):
e0157464
.
23.
Warren
WC
,
Hillier
LW
,
Tomlinson
C
,
Minx
P
,
Kremitzki
M
,
Graves
T
, et al
.
A new chicken genome assembly provides insight into avian genome structure
.
G3 (Bethesda)
.
2017
;
7
(
1
):
109
17
.
24.
O’Connor
C
.
Fluorescence in situ hybridization (FISH)
.
Nat Education
. 1st ed.
2008
.
25.
Zurita
F
,
Sánchez
A
,
Burgos
M
,
Jiménez
R
,
Díaz de la Guardia
R
.
Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization
.
Heredity
.
1997
;
78 (Pt 3)
(
3
):
229
34
.
26.
Nishida
C
,
Ishijima
J
,
Kosaka
A
,
Tanabe
H
,
Habermann
FA
,
Griffin
DK
, et al
.
Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation
.
Chromosome Res
.
2008
;
16
(
1
):
171
81
.
27.
Degrandi
TM
,
Gunski
RJ
,
Garnero
ADV
,
Oliveira
EHCD
,
Kretschmer
R
,
Souza
MSD
, et al
.
The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories
.
Genet Mol Biol
.
2020
;
43
(
2
):
e20180331
.
28.
Tagliarini
MM
,
Pieczarka
JC
,
Nagamachi
CY
,
Rissino
J
,
de Oliveira
EHC
.
Chromosomal analysis in Cathartidae: distribution of heterochromatic blocks and rDNA, and phylogenetic considerations
.
Genetica
.
2009
;
135
(
3
):
299
304
.
29.
Bilaud
T
,
Brun
C
,
Ancelin
K
,
Koering
CE
,
Laroche
T
,
Gilson
E
.
Telomeric localization of TRF2, a novel human telobox protein
.
Nat Genet
.
1997
;
17
(
2
):
236
9
.
30.
Blackburn
EH
,
Greider
CW
,
Szostak
JW
.
Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging
.
Nat Med
.
2006
;
12
(
10
):
1133
8
.
31.
Ruiz-Herrera
A
,
Nergadze
SG
,
Santagostino
M
,
Giulotto
E
.
Telomeric repeats far from the ends: mechanisms of origin and role in evolution
.
Cytogenet Genome Res
.
2008
;
122
(
3–4
):
219
28
.
32.
Nanda
I
,
Schrama
D
,
Feichtinger
W
,
Haaf
T
,
Schartl
M
,
Schmid
M
.
Distribution of telomeric (TTAGGG)n sequences in avian chromosomes
.
Chromosoma
.
2002
;
111
(
4
):
215
27
.
33.
Derjusheva
S
,
Kurganova
A
,
Habermann
F
,
Gaginskaya
E
.
High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds
.
Chromosome Res
.
2004
;
12
(
7
):
715
23
.
34.
Seibold-Torres
C
,
Owens
E
,
Chowdhary
R
,
Ferguson-Smith
MA
,
Tizard
I
,
Raudsepp
T
.
Comparative cytogenetics of the Congo african grey parrot (Psittacus erithacus)
.
Cytogenet Genome Res
.
2015
;
147
(
2–3
):
144
53
.
35.
de Oliveira
TD
,
Kretschmer
R
,
Bertocchi
NA
,
Degrandi
TM
,
de Oliveira
EHC
,
Cioffi
MDB
, et al
.
Genomic organization of repetitive DNA in woodpeckers (aves, Piciformes): implications for karyotype and ZW sex chromosome differentiation
.
PLoS One
.
2017
;
12
(
1
):
e0169987
.
36.
Garnero
ADV
,
Gunski
RJ
.
Comparative analysis of the karyotypes of Nothura maculosa and Rynchotus rufescens (Aves: tinamidae). A case of chromosomal polymorphism
.
Nucleus-Calcutta-International J Cytol
.
2000
;
43
(
3
):
64
70
.
37.
Sumner
AT
.
A simple technique for demonstrating centromeric heterochromatin
.
Exp Cell Res
.
1972
;
75
(
1
):
304
6
.
38.
Lui
R
,
Blanco
D
,
Moreira-Filho
O
,
Margarido
V
.
Propidium iodide for making heterochromatin more evident in the C-banding technique
.
Biotech Histochem
.
2012
;
87
(
7
):
433
8
.
39.
Kretschmer
R
,
dos Santos
MDS
,
de Oliveira Furo
I
,
de Oliveira
EHC
,
de Bello Cioffi
M
.
FISH—in birds. Cytogenetics and molecular cytogenetics
.
Boca Raton
:
CRC Press
;
2022
; p.
263
79
.
40.
Guerra
MDS
.
Reviewing the chromosome nomenclature of levan
.
Braz J Genet
.
1986
;
9
:
741
3
.
41.
Rodrigues
BS
,
Kretschmer
R
,
Gunski
RJ
,
Garnero
ADV
,
O’Brien
PCM
,
Ferguson-Smith
M
, et al
.
Chromosome painting in tyrant flycatchers confirms a set of inversions shared by oscines and suboscines (aves, passeriformes)
.
Cytogenet Genome Res
.
2017
;
153
(
4
):
205
12
.
42.
Levan
A
,
Fredga
K
,
Sandberg
AA
.
Nomenclature for centromeric position ON chromosomes
.
Hereditas
.
2009
;
52
(
2
):
201
20
.
43.
Garnero
V
,
Boccelli
M
,
Oliveira
JCP
,
Ledesma
MA
,
Montalti
D
,
Coria
N
, et al
.
Chromosomal characterization of four antarctic procellariiformes
.
Mar Ornithol
.
2013
;
41
:
63
8
.
44.
Kretschmer
R
,
Lima
VL
,
Degrandi
TM
,
Vinadé
L
,
Schünemann
AL
,
Garnero
ADV
, et al
.
NOR- bearing as a plesiomorphic characteristic in Mimus saturninus (Passeriformes Mimidae)
.
J Biotechnol Biodivers
.
2014
;
5
(
2
):
140
7
.
45.
Degrandi
TM
,
del Valle Garnero
A
,
O’Brien
PCM
,
Ferguson-Smith
MA
,
Kretschmer
R
,
de Oliveira
EHC
, et al
.
Chromosome painting in trogon s. surrucura (aves, Trogoniformes) reveals a karyotype derived by chromosomal fissions, fusions, and inversions
.
Cytogenet Genome Res
.
2017
;
151
(
4
):
208
15
.
46.
Degrandi
TM
,
de Oliveira
JCP
,
Soares
ADA
,
Ledesma
MA
,
Hass
I
,
Garnero
ADV
, et al
.
Karyotype description and comparative analysis in ringed kingfisher and green kingfisher (Coraciiformes, alcedinidae)
.
Comp Cytogenet
.
2018
;
12
(
2
):
163
70
.
47.
Barcellos
SA
,
Kretschmer
R
,
de Souza
MS
,
Costa
AL
,
Degrandi
TM
,
dos Santos
MS
, et al
.
Karyotype evolution and distinct evolutionary history of the W chromosomes in swallows (aves, passeriformes)
.
Cytogenet Genome Res
.
2019
;
158
(
2
):
98
105
.
48.
Souza
MSD
,
Barcellos
SA
,
Costa
AL
,
Kretschmer
R
,
Garnero
ADV
,
Gunski
RJ
.
Polymorphism of Sooty-fronted Spinetail (Synallaxis frontalis Aves: Furnariidae): evidence of chromosomal rearrangements by pericentric inversion in autosomal macrochromosomes
.
Genet Mol Biol
.
2019
;
42
(
1
):
62
7
.
49.
Gunski
RJ
,
Kretschmer
R
,
Santos de Souza
M
,
de Oliveira Furo
I
,
Barcellos
SA
,
Costa
AL
, et al
.
Evolution of bird sex chromosomes narrated by repetitive sequences: unusual W chromosome enlargement in Gallinula melanops (aves: Gruiformes: rallidae)
.
Cytogenet Genome Res
.
2019
;
158
(
3
):
152
9
.
50.
Kretschmer
R
,
Gunski
RJ
,
Garnero
A
,
de Freitas
TRO
,
Toma
GA
,
Cioffi
MDB
, et al
.
Chromosomal analysis in Crotophaga ani (aves, Cuculiformes) reveals extensive genomic reorganization and an unusual Z-autosome robertsonian translocation
.
Cells
.
2020
;
10
(
1
):
4
.
51.
de Souza
MS
,
Kretschmer
R
,
Barcellos
SA
,
Costa
AL
,
Cioffi
MDB
,
de Oliveira
EHC
, et al
.
Repeat sequence mapping shows different W chromosome evolutionary pathways in two Caprimulgiformes families
.
Birds
.
2020
;
1
(
1
):
19
34
.
52.
Kretschmer
R
,
Rodrigues
BS
,
Barcellos
SA
,
Costa
AL
,
Cioffi
MDB
,
Garnero
ADV
, et al
.
Karyotype evolution and genomic organization of repetitive DNAs in the saffron finch, sicalis flaveola (passeriformes, aves)
.
Animals
.
2021
;
11
(
5
):
1456
.
53.
Tura
V
,
Kretschmer
R
,
Sassi
FDMC
,
de Moraes
RLR
,
Barcellos
SA
,
de Rosso
VO
, et al
.
Chromosomal evolution of suboscines: karyotype diversity and evolutionary trends in ovenbirds (passeriformes, Furnariidae)
.
Cytogenet Genome Res
.
2022
;
162
(
11–12
):
644
56
.
54.
Saraiva
DM
,
de Souza
MS
,
Tura
V
,
de Rosso
VO
,
Zefa
E
,
Garnero
ADV
, et al
.
Comparative cytogenetics in Tyrannidae (aves, passeriformes): high genetic diversity despite conserved karyotype organization
.
Cytogenet Genome Res
.
2024
;
164
(
1
):
43
51
.
55.
Nishida-Umehara
C
,
Tsuda
Y
,
Ishijima
J
,
Ando
J
,
Fujiwara
A
,
Matsuda
Y
, et al
.
The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds
.
Chromosome Res
.
2007
;
15
(
6
):
721
34
.
56.
Barbosa
MDO
,
Silva
RRD
,
Correia
VCS
,
Santos
LP
,
Garnero
A
,
Gunski
RJ
, et al
.
Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): evidence of a chromosome inversion
.
Genet Mol Biol
.
2013
;
36
(
1
):
070
3
.
57.
Ribas
TFA
,
Nagamachi
CY
,
Aleixo
A
,
Pinheiro
MLS
,
O Brien
PCM
,
Ferguson-Smith
MA
, et al
.
Chromosome painting in Glyphorynchus spirurus (Vieillot, 1819) detects a new fission in Passeriformes
.
PLoS One
.
2018
;
13
(
8
):
e0202040
.
58.
Cazaux
B
,
Catalan
J
,
Veyrunes
F
,
Douzery
EJ
,
Britton-Davidian
J
.
Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)
.
BMC Evol Biol
.
2011
;
11
(
1
):
124
.
59.
Datson
PM
,
Murray
BG
.
Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism
.
Chromosome Res
.
2006
;
14
(
8
):
845
57
.
60.
Huang
J
,
Ma
L
,
Yang
F
,
Fei
S
,
Li
L
.
45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in lolium spp
.
PLoS One
.
2008
;
3
(
5
):
e2167
.
61.
Vicari
MR
,
Bruschi
DP
,
Cabral-de-Mello
DC
,
Nogaroto
V
.
Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution
.
Genet Mol Biol
.
2022
;
45
(
3 Suppl 1
):
e20220071
.
62.
Zattera
ML
,
Bruschi
DP
.
Transposable elements as a source of novel repetitive DNA in the eukaryote genome
.
Cells
.
2022
;
11
(
21
):
3373
.
63.
Bertocchi
NA
,
de Oliveira
TD
,
del Valle Garnero
A
,
Coan
RLB
,
Gunski
RJ
,
Martins
C
, et al
.
Distribution of CR1-like transposable element in woodpeckers (Aves Piciformes): Z sex chromosomes can act as a refuge for transposable elements
.
Chromosome Res
.
2018
;
26
(
4
):
333
43
.
64.
Farias de Farias
N
,
Gunski
RJ
,
Del Valle Garnero
A
,
Cañedo
AD
,
Herculano Correa de Oliveira
E
,
Oliveira Silva
FA
, et al
.
Chromosome mapping of retrotransposon AviRTE in a neotropical bird species: Trogon surrucura (Trogoniformes; Trogonidae)
.
Genome
.
2024
;
67
(
9
):
307
15
.
You do not currently have access to this content.