Introduction: Satellite DNA is an important component of the eukaryotic genome. Some satellite DNAs plays an important role in various biological processes. The red-eared slider (Trachemys scripta elegans, 2n = 50, C = 1.43 pg) belongs to the American freshwater turtle family and is recognized as one of the world's most invasive species. In the T. s. elegans chromosome-level genome assembly, which has been recently published, satellite DNAs comprise only 0.1%. From the repetitive repertoire of the T. elegans genome, only ribosomal DNA genes and telomeric repeats have been localized on the species’ chromosomes. Methods: Using publicly available short-read sequencing data, we conducted de novo identification of the most abundant satellite DNAs in T. s. elegans using the TAREAN pipeline. We combined bioinformatics (using blastn) and chromosome mapping by fluorescence in situ hybridization to describe the distribution of major tandem repetitive DNAs. The diversity and distribution of satDNA in the assembled genome of T. s. elegans were explored using the SatXplor pipeline. Results: Six major satellite sequences occupying approximately 0.8% of the genome were identified in the genome data, all of which were successfully localized both in situ and in silico on T. s. elegans chromosomes and in silico on chromosomal scaffolds. We revealed a complex structural organization of these sequences: monomers may be moderately or highly variable and they may contain regions homologous to retrotransposons. Cytogenetic mapping showed the accumulation of satellite DNAs in the pericentromeric regions of most chromosomes and in the distal regions of the short arms of submetacentric chromosomes. Comparisons between cytogenetic maps and genome assembly data revealed discrepancies in the number and chromosomal locations of the identified satellite DNA clusters. Conclusion: The red-eared slider genome has a greater proportion of satellite DNA than was previously reported. These satellites demonstrate no specificity for either macrochromosomes or microchromosomes. Differences between in situ and in silico results indicate the challenges of repetitive sequence assembly, as well as discrepancies between chromosome numbering in the current chromosome-level genome assembly and the physical chromosome map.

1.
Thierry
A
,
Bouchier
C
,
Dujon
B
,
Richard
GF
.
Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata
.
Nucleic Acids Res
.
2008
;
36
(
18
):
5970
82
.
2.
Charlesworth
B
,
Sniegowski
P
,
Stephan
W
.
The evolutionary dynamics of repetitive DNA in eukaryotes
.
Nature
.
1994
;
371
(
6494
):
215
20
.
3.
Ellegren
H
.
Microsatellites: simple sequences with complex evolution
.
Nat Rev Genet
.
2004
;
5
(
6
):
435
45
.
4.
Novák
P
,
Ávila Robledillo
L
,
Koblížková
A
,
Vrbová
I
,
Neumann
P
,
Macas
J
.
TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads
.
Nucleic Acids Res
.
2017
;
45
(
12
):
e111
.
5.
Richard
G-F
,
Kerrest
A
,
Dujon
B
.
Comparative genomics and molecular dynamics of DNA repeats in eukaryotes
.
Microbiol Mol Biol Rev
.
2008
;
72
(
4
):
686
727
.
6.
Lower
SS
,
McGurk
MP
,
Clark
AG
,
Barbash
DA
.
Satellite DNA evolution: old ideas, new approaches
.
Curr Opin Genet Dev
.
2018
;
49
:
70
8
.
7.
Thakur
J
,
Packiaraj
J
,
Henikoff
S
.
Sequence, chromatin and evolution of satellite DNA
.
Int J Mol Sci
.
2021
;
22
(
9
):
4309
.
8.
Talbert
PB
,
Henikoff
S
.
What makes a centromere
.
Exp Cel Res
.
2020
;
389
(
2
):
111895
.
9.
Verstrepen
KJ
,
Jansen
A
,
Lewitter
F
,
Fink
GR
.
Intragenic tandem repeats generate functional variability
.
Nat Genet
.
2005
;
37
(
9
):
986
90
.
10.
Blackburn
EH
.
Switching and signaling at the telomere
.
Cell
.
2001
;
106
(
6
):
661
73
.
11.
Houben
A
.
B chromosomes – a matter of chromosome drive
.
Front Plant Sci
.
2017
;
8
:
210
.
12.
Radó-Trilla
N
,
Albà
M
.
Dissecting the role of low-complexity regions in the evolution of vertebrate proteins
.
BMC Evol Biol
.
2012
;
12
(
1
):
155
.
13.
Tørresen
OK
,
Star
B
,
Mier
P
,
Andrade-Navarro
MA
,
Bateman
A
,
Jarnot
P
, et al
.
Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases
.
Nucleic Acids Res
.
2019
;
47
(
21
):
10994
1006
.
14.
Dolzhenko
E
,
English
A
,
Dashnow
H
,
De Sena Brandine
G
,
Mokveld
T
,
Rowell
WJ
, et al
.
Characterization and visualization of tandem repeats at genome scale
.
Nat Biotechnol
.
2024
;
42
(
10
):
1606
14
.
15.
Jain
M
,
Koren
S
,
Miga
KH
,
Quick
J
,
Rand
AC
,
Sasani
TA
, et al
.
Nanopore sequencing and assembly of a human genome with ultra-long reads
.
Nat Biotechnol
.
2018
;
36
(
4
):
338
45
.
16.
Peona
V
,
Weissensteiner
MH
,
Suh
A
.
How complete are “complete” genome assemblies? An avian perspective
.
Mol Ecol Resour
.
2018
;
18
(
6
):
1188
95
.
17.
Crawford
NG
,
Parham
JF
,
Sellas
AB
,
Faircloth
BC
,
Glenn
TC
,
Papenfuss
TJ
, et al
.
A phylogenomic analysis of turtles
.
Mol Phylogenet Evol
.
2015
;
83
:
250
7
.
18.
Shaffer
HB
,
McCartney-Melstad
E
,
Near
TJ
,
Mount
GG
,
Spinks
PQ
.
Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines)
.
Mol Phylogenet Evol
.
2017
;
115
:
7
15
.
19.
Simões
TR
,
Kammerer
CF
,
Caldwell
MW
,
Pierce
SE
.
Successive climate crises in the deep past drove the early evolution and radiation of reptiles
.
Sci Adv
.
2022
;
8
(
33
):
eabq1898
.
20.
Thomson
RC
,
Spinks
PQ
,
Shaffer
HB
.
A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
7
):
e2012215118
.
21.
Organ
CL
,
Moreno
RG
,
Edwards
SV
.
Three tiers of genome evolution in reptiles
.
Integr Comp Biol
.
2008
;
48
(
4
):
494
504
.
22.
Shedlock
AM
,
Botka
CW
,
Zhao
S
,
Shetty
J
,
Zhang
T
,
Liu
JS
, et al
.
Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
8
):
2767
72
.
23.
Olmo
E
.
Trends in the evolution of reptilian chromosomes
.
Integr Comp Biol
.
2008
;
48
(
4
):
486
93
.
24.
Montiel
EE
,
Badenhorst
D
,
Lee
LS
,
Literman
R
,
Trifonov
V
,
Valenzuela
N
.
Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to Amphibian autosomes
.
Cytogenet Genome Res
.
2016
;
148
(
4
):
292
304
.
25.
Card
DC
,
Jennings
WB
,
Edwards
SV
.
Genome evolution and the future of phylogenomics of non-avian reptiles
.
Anim
.
2023
;
13
(
3
):
471
.
26.
Lee
L
,
Montiel
EE
,
Navarro-Domínguez
BM
,
Valenzuela
N
.
Chromosomal rearrangements during turtle evolution altered the synteny of genes involved in vertebrate sex determination
.
Cytogenet Genome Res
.
2019
;
157
(
1–2
):
77
88
.
27.
Schmid
M
,
Steinlein
C
,
Reiter
AM
,
Rovatsos
M
,
Altmanová
M
,
Mazzoleni
S
, et al
.
5-Methylcytosine-Rich heterochromatin in reptiles
.
Cytogenet Genome Res
.
2019
;
157
(
1–2
):
53
64
.
28.
Ahmad
SF
,
Singchat
W
,
Jehangir
M
,
Panthum
T
,
Srikulnath
K
.
Consequence of paradigm shift with repeat landscapes in reptiles: powerful facilitators of chromosomal rearrangements for diversity and evolution
.
Genes (Basel)
.
2020
;
11
(
7
):
827
.
29.
Cavalcante
MG
,
Nagamachi
CY
,
Pieczarka
JC
,
Noronha
RCR
.
Evolutionary insights in Amazonian turtles (Testudines, Podocnemididae): co-location of 5S rDNA and U2 snRNA and wide distribution of Tc1/Mariner
.
Biol Open
.
2020
;
9
(
4
):
bio049817
.
30.
Clemente
L
,
Mazzoleni
S
,
Pensabene
E
,
Protiva
T
,
Wagner
P
,
Fritz
U
, et al
.
Cytogenetic analysis of the asian box turtles of the genus Cuora (Testudines, Geoemydidae)
.
Genes (Basel)
.
2021
;
12
(
2
):
156
.
31.
Kawagoshi
T
,
Uno
Y
,
Nishida
C
,
Matsuda
Y
.
The Staurotypus turtles and aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination
.
PLoS One
.
2014
;
9
(
8
):
e105315
.
32.
Kawagoshi
T
,
Uno
Y
,
Matsubara
K
,
Matsuda
Y
,
Nishida
C
.
The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15
.
Cytogenet Genome Res
.
2009
;
125
(
2
):
125
31
.
33.
Machado
CRD
,
Glugoski
L
,
Domit
C
,
Pucci
MB
,
Goldberg
DW
,
Marinho
LA
, et al
.
Comparative cytogenetics of four sea turtle species (cheloniidae): G-banding pattern and in situ localization of repetitive DNA units
.
Cytogenet Genome Res
.
2020
;
160
(
9
):
531
8
.
34.
Martinez
PA
,
Boeris
JM
,
Sánchez
J
,
Pastori
MC
,
Bolzán
AD
,
Ledesma
MA
.
Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: testudinidae), two species of Cryptodiran turtles from Argentina
.
Genetica
.
2009
;
137
(
3
):
277
83
.
35.
Yamada
K
,
Nishida-Umehara
C
,
Matsuda
Y
.
Molecular and cytogenetic characterization of site-specific repetitive DNA sequences in the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae)
.
Chromosome Res
.
2005
;
13
(
1
):
33
46
.
36.
Kawagoshi
T
,
Nishida
C
,
Matsuda
Y
.
The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines)
.
Chromosome Res
.
2012
;
20
(
1
):
95
110
.
37.
Machado
CRD
,
Domit
C
,
Pucci
MB
,
Gazolla
CB
,
Glugoski
L
,
Nogaroto
V
, et al
.
Heterochromatin and microsatellites detection in karyotypes of four sea turtle species: interspecific chromosomal differences
.
Genet Mol Biol
.
2020
;
43
(
4
):
e20200213
9
.
38.
Brian Simison
W
,
Parham
JF
,
Papenfuss
TJ
,
Lam
AW
,
Henderson
JB
.
An annotated chromosome-level reference genome of the red-eared slider turtle (Trachemys scripta elegans)
.
Genome Biol Evol
.
2020
;
12
(
4
):
456
62
.
39.
Cleiton
F
,
Giuliano-Caetano
L
.
Cytogenetic characterization of two turtle species: Trachemys dorbigni and Trachemys scripta elegans
.
Caryologia
.
2008
;
61
(
3
):
253
7
.
40.
Kulak
M
,
Galkina
S
,
Saifitdinova
A
,
Gaginskaya
E
.
Establishment of primary cell lines from tissues of the red-eared slider
.
Biol Commun
.
2020
;
64
(
4
):
229
34
.
41.
Gladkikh
OL
,
Romanenko
SA
,
Lemskaya
NA
,
Serdyukova
NA
,
O’Brien
PCM
,
Kovalskaya
JM
, et al
.
Rapid karyotype evolution in Lasiopodomys involved at least two autosome - sex chromosome translocations
.
PLoS One
.
2016
;
11
(
12
):
e0167653
.
42.
Trifonov
VA
,
Vorobieva
NV
,
Serdyukova
NA
,
Rens
W
.
FISH with and without COT1 DNA
.
2017
.
123
33
.
43.
Novák
P
,
Neumann
P
,
Pech
J
,
Steinhaisl
J
,
MacAs
J
.
RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads
.
Bioinformatics
.
2013
;
29
(
6
):
792
3
.
44.
Afgan
E
,
Baker
D
,
van den Beek
M
,
Blankenberg
D
,
Bouvier
D
,
Čech
M
, et al
.
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
.
Nucleic Acids Res
.
2016
;
44
(
W1
):
W3
10
.
45.
Novák
P
,
Neumann
P
,
Macas
J
.
Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2
.
Nat Protoc
.
2020
;
15
(
11
):
3745
76
.
46.
Hu
K
,
Ni
P
,
Xu
M
,
Zou
Y
,
Chang
J
,
Gao
X
, et al
.
HiTE: a fast and accurate dynamic boundary adjustment approach for full-length transposable element detection and annotation
.
Nat Commun
.
2024
;
15
(
1
):
5573
.
47.
Qian
J
,
Xue
H
,
Ou
S
,
Storer
J
,
Fürtauer
L
,
Wildermuth
MC
, et al
.
TEtrimmer: a novel tool to automate the manual curation of transposable elements
.
bioRxiv
;
2024
.
48.
Altschul
SF
,
Gish
W
,
Miller
W
,
Myers
EW
,
Lipman
DJ
.
Basic local alignment search tool
.
J Mol Biol
.
1990
;
215
(
3
):
403
10
.
49.
Mistry
J
,
Chuguransky
S
,
Williams
L
,
Qureshi
M
,
Salazar
GA
,
Sonnhammer
ELL
, et al
.
Pfam: the protein families database in 2021
.
Nucleic Acids Res
.
2021
;
49
(
D1
):
D412
9
.
50.
Biltueva
LS
,
Prokopov
DY
,
Makunin
AI
,
Komissarov
AS
,
Kudryavtseva
AV
,
Lemskaya
NA
, et al
.
Genomic organization and physical mapping of tandemly arranged repetitive DNAs in sterlet (Acipenser ruthenus)
.
Cytogenet Genome Res
.
2017
;
152
(
3
):
148
57
.
51.
Ijdo
JW
,
Wells
RA
,
Baldini
A
,
Reeders
ST
.
Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR
.
Nucleic Acids Res
.
1991
;
19
(
17
):
4780
.
52.
Maden
BEH
,
Dent
CL
,
Farrell
TE
,
Garde
J
,
McCallum
FS
,
Wakeman
JA
.
Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones
.
Biochem J
.
1987
;
246
(
2
):
519
27
.
53.
Volarić
M
,
Meštrović
N
,
Despot-Slade
E
.
SatXplor – a comprehensive pipeline for satellite DNA analyses in complex genome assemblies
.
2024
.
54.
Seabright
M
.
A rapid banding technique for human chromosomes
.
Lancet
.
1971
;
2
(
7731
):
971
2
.
55.
Graphodatsky
ASRSI
Chromosomes of agricultural and laboratory mammals
.
Novosibirsk
;
1988
.
56.
Yang
F
,
Graphodatsky
AS
.
Animal probes and zoo-FISH
. In:
Fluorescence in situ hybridization (FISH)—application guide
;
2017
; p.
395
416
.
57.
He
Y
,
He
J
,
Zhao
Y
,
Zhang
S
,
Rao
X
,
Wang
H
, et al
.
Divergence of 10 satellite repeats in Artemisia (Asteraceae: anthemideae) based on sequential fluorescence in situ hybridization analysis: evidence for species identification and evolution
.
Chromosome Res
.
2024
;
32
(
2
):
5
.
58.
Fertin
G
,
Jean
G
,
Radulescu
A
,
Rusu
I
.
Hybrid de novo tandem repeat detection using short and long reads
.
BMC Med Genomics
.
2015
;
8
(
suppl 3
):
S5
.
59.
Guizard
S
,
Piégu
B
,
Arensburger
P
,
Guillou
F
,
Bigot
Y
.
Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools
.
BMC Genomics
.
2016
;
17
(
1
):
1
23
.
60.
Kawagoshi
T
,
Nishida
C
,
Ota
H
,
Kumazawa
Y
,
Endo
H
,
Matsuda
Y
.
Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia)
.
Chromosome Res
.
2008
;
16
(
8
):
1119
32
.
61.
Romanenko
SA
,
Prokopov
DY
,
Proskuryakova
AA
,
Davletshina
GI
,
Tupikin
AE
,
Kasai
F
, et al
.
The cytogenetic map of the nile crocodile (Crocodylus niloticus, crocodylidae, reptilia) with fluorescence in situ localization of major repetitive DNAs
.
Int J Mol Sci
.
2022
;
23
(
21
):
13063
.
62.
Yamada
K
,
Nishida-Umehara
C
,
Matsuda
Y
.
A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes)
.
Chromosoma
.
2004
;
112
(
6
):
277
87
.
63.
Kumazawa
Y
,
Nishida
M
.
Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles
.
Mol Biol Evol
.
1999
;
16
(
6
):
784
92
.
64.
Janke
A
,
Erpenbeck
D
,
Nilsson
M
,
Arnason
U
.
The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny
.
Proc Biol Sci
.
2001
;
268
(
1467
):
623
31
.
65.
Rest
JS
,
Ast
JC
,
Austin
CC
,
Waddell
PJ
,
Tibbetts
EA
,
Hay
JM
, et al
.
Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome
.
Mol Phylogenet Evol
.
2003
;
29
(
2
):
289
97
.
66.
Kumazawa
Y
.
Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations
.
Gene
.
2007
;
388
(
1–2
):
19
26
.
67.
Sorokin
AA
,
Makogonov
SV
,
Korolev
SP
.
The information infrastructure for collective scientific work in the far east of Russia
.
Sci Tech Inf Proc
.
2017
;
44
(
4
):
302
4
.
You do not currently have access to this content.