Introduction: Passeriformes has the greatest species diversity among Neoaves, and the Tyrannidae is the richest in this order with about 600 valid species. The diploid number of this family remains constant, ranging from 2n = 76 to 84, but the chromosomal morphology varies, indicating the occurrence of different chromosomal rearrangements. Cytogenetic studies of the Tyrannidae remain limited, with approximately 20 species having been karyotyped thus far. This study aimed to describe the karyotypes of two species from this family, Myiopagis viridicata and Sirystes sibilator. Methods: Skin biopsies were taken from each individual to establish fibroblast cell cultures and to obtain chromosomal preparations using the standard methodology. The chromosomal distribution of constitutive heterochromatin was investigated by C-banding, while the location of simple repetitive sequences (SSRs), 18S rDNA, and telomeric sequences was found through fluorescence in situ hybridization. Results: The karyotypes of both species are composed of 2n = 80. The 18S rDNA probes hybridized into two pairs of microchromosomes in M. viridicata, but only a single pair in S. sibilator. Only the telomeric portions of each chromosome in both species were hybridized by the telomere sequence probes. Most of the SSRs were found accumulated in the centromeric and telomeric regions of several macro- and microchromosomes in both species, which likely correspond to the heterochromatin-rich regions. Conclusion: Although both species analyzed showed a conserved karyotype organization (2n = 80), our study revealed significant differences in their chromosomal architecture, rDNA distribution, and SSR accumulation. These findings were discussed in the context of the evolution of Tyrannidae karyotypes.

1.
Moyle
RG
,
Chesser
RT
,
Brumfield
RT
,
Tello
JG
,
Marchese
DJ
,
Cracraft
J
.
Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes: infraorder Furnariides)
.
Cladistics
.
2009
;
25
(
4
):
386
405
.
2.
Degrandi
TM
,
Barcellos
SA
,
Costa
AL
,
Garnero
ADV
,
Hass
I
,
Gunski
RJ
.
Introducing the bird chromosome database: an overview of cytogenetic studies in birds
.
Cytogenet Genome Res
.
2020
;
160
(
4
):
199
205
.
3.
Gunski
RJ
,
Cañedo
AD
,
Garnero
ADV
,
Ledesma
MA
,
Coria
N
,
Montalti
D
, et al
.
Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae)
.
Comp Cytogenet
.
2017
;
11
(
3
):
541
52
.
4.
Ellegren
H
.
Evolution of the avian sex chromosomes and their role in sex determination
.
Trends Ecol Evol
.
2000
;
15
(
5
):
188
92
.
5.
Schartl
M
,
Schmid
M
,
Nanda
I
.
Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs
.
Chromosoma
.
2016
;
125
(
3
):
553
71
.
6.
Correia
VCS
,
Garnero
ADV
,
Santos
LP
,
Silva
RR
,
Barbosa
MO
,
Bonifácio
HL
, et al
.
Alta similaridade cariotípica na família Emberezidae (Aves: Passeriformes)
.
Biosci J
.
2009
;
25
:
99
111
.
7.
de Oliveira Barbosa
M
,
da Silva
RR
,
de Sena Correia
VC
,
Dos Santos
LP
,
Garnero
ADV
,
Gunski
RJ
.
Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): evidence of a chromosome inversion
.
Genet Mol Biol
.
2013
;
36
(
1
):
70
3
.
8.
dos Santos
MDS
,
Kretschmer
R
,
Silva
FAO
,
Ledesma
MA
,
O’Brien
PCM
,
Ferguson-Smith
MA
, et al
.
Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes
.
Genetica
.
2015
;
143
(
5
):
535
43
.
9.
Ericson
PG
,
Klopfstein
S
,
Irestedt
M
,
Nguyen
JMT
,
Nylander
JAA
.
Dating the diversification of the major lineages of Passeriformes (Aves)
.
BMC Evol Biol
.
2014
;
14
:
8
15
.
10.
Gill
F
,
Donsker
D
,
Rasmussen
P
, editors.
IOC world bird list
;
2023
.
v13.2
.
11.
Kretschmer
R
,
Gunski
RJ
,
Garnero
ADV
,
Furo
IDO
,
O’Brien
PCM
,
Ferguson-Smith
MA
, et al
.
Molecular cytogenetic characterization of multiple intrachromosomal rearrangements in two representatives of the genus Turdus (Turdidae, Passeriformes)
.
PLoS One
.
2014
;
9
(
7
):
e103338
.
12.
Kretschmer
R
,
de Oliveira
EHC
,
dos Santos
MS
,
Furo
IDO
,
O’Brien
PCM
,
Ferguson-Smith
MA
, et al
.
Chromosome mapping of the large elaenia (Elaenia spectabilis): evidence for a cytogenetic signature for passeriform birds
.
Biol J Linn Soc
.
2015
;
115
(
2
):
391
8
.
13.
Weissensteiner
MH
,
Suh
A
.
Repetitive DNA: the dark matter of avian genomics
.
Avian Genomics Ecol Evol
.
2019
:
93
150
.
14.
Szarski
H
.
Cell size and nuclear DNA content in vertebrates
.
Int Rev Cytol
.
1976
;
44
:
93
111
.
15.
de Oliveira
TD
,
Kretschmer
R
,
Bertocchi
NA
,
Degrandi
TM
,
de Oliveira
EHC
,
Cioffi
MDB
, et al
.
Genomic organization of repetitive DNA in woodpeckers (Aves, Piciformes): implications for karyotype and ZW sex chromosome differentiation
.
PLoS One
.
2017
;
12
(
1
):
e0169987
.
16.
de Oliveira Furo
I
,
Kretschmer
R
,
dos Santos
MS
,
de Lima Carvalho
CA
,
Gunski
RJ
,
O’Brien
PCM
, et al
.
Chromosomal mapping of repetitive DNAs in Myiopsitta monachus and Amazona aestiva (Psittaciformes, Psittacidae: psittaciformes), with emphasis on the sex chromosomes
.
Cytogenet Genome Res
.
2017
;
151
(
3
):
151
60
.
17.
Kretschmer
R
,
de Oliveira
TD
,
de Oliveira Furo
I
,
Oliveira Silva
FA
,
Gunski
RJ
,
Del Valle Garnero
A
, et al
.
Repetitive DNAs and shrink genomes: a chromosomal analysis in nine Columbidae species (Aves, Columbiformes)
.
Genet Mol Biol
.
2018
;
41
(
1
):
98
106
.
18.
de Souza
MS
,
Kretschmer
R
,
Barcellos
SA
,
Costa
AL
,
Cioffi
MDB
,
de Oliveira
EHC
, et al
.
Repeat sequence mapping shows different W chromosome evolutionary pathways in two caprimulgiformes families
.
Birds
.
2020
;
1
:
19
34
.
19.
Barcellos
SA
,
Kretschmer
R
,
de Souza
MS
,
Costa
AL
,
Degrandi
TM
,
dos Santos
MS
, et al
.
Karyotype evolution and distinct evolutionary history of the W chromosomes in swallows (Aves, Passeriformes)
.
Cytogenet Genome Res
.
2019
;
158
(
2
):
98
105
.
20.
Kretschmer
R
,
Rodrigues
BS
,
Barcellos
SA
,
Costa
AL
,
Cioffi
MDB
,
Garnero
ADV
, et al
.
Karyotype evolution and genomic organization of repetitive DNAs in the saffron finch, Sicalis flaveola (Passeriformes, Aves)
.
Animals
.
2021
;
11
(
5
):
1456
.
21.
Tura
V
,
Kretschmer
R
,
Sassi
FDMC
,
de Moraes
RLR
,
Barcellos
SA
,
de Rosso
VO
, et al
.
Chromosomal evolution of Suboscines: karyotype diversity and evolutionary trends in ovenbirds (Passeriformes, Furnariidae)
.
Cytogenet Genome Res
.
2022
;
162
(
11–12
):
644
56
.
22.
Degrandi
TM
,
Gunski
RJ
,
Garnero
ADV
,
Oliveira
EHC
,
Kretschmer
R
,
Souza
MS
, et al
.
The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories
.
Genet Mol Biol
.
2020
;
43
(
2
):
e20180331
.
23.
Nishida-Umehara
C
,
Tsuda
Y
,
Ishijima
J
,
Ando
J
,
Fujiwara
A
,
Matsuda
Y
, et al
.
The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds
.
Chromosome Res
.
2007
;
15
(
6
):
721
34
.
24.
Dos Santos
MDS
,
Kretschmer
R
,
Frankl-Vilches
C
,
Bakker
A
,
Gahr
M
,
O’Brien
PCM
, et al
.
Comparative cytogenetics between two important songbird, models: the zebra finch and the canary
.
PLoS One
.
2017
;
12
(
1
):
e0170997
.
25.
Bülau
SE
,
Kretschmer
R
,
Furo
IDO
,
de Oliveira
EHC
,
de Freitas
TRO
.
Karyotype organization of the endangered species yellow cardinal (Gubernatrix cristata)
.
DNA
.
2021
;
1
(
2
):
77
83
.
26.
Degrandi
TM
,
Gunski
RJ
,
Garnero
ADV
,
Oliveira
EHC
,
Kretschmer
R
,
Souza
MS
, et al
.
The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories
.
Genet Mol Biol
.
2020
;
43
(
2
):
e20180331
.
27.
Delany
ME
,
Krupkin
AB
,
Miller
MM
.
Organization of telomere sequences in birds: evidence for arrays of extreme length and for in vivo shortening
.
Cytogenet Cell Genet
.
2000
;
90
(
1–2
):
139
45
.
28.
Nanda
I
,
Schrama
D
,
Feichtinger
W
,
Haaf
T
,
Schartl
M
,
Schmid
M
.
Distribution of telomeric (TTAGGG) n sequences in avian chromosomes
.
Chromosoma
.
2002
;
111
(
4
):
215
27
.
29.
Sasaki
M
,
Ikeuchi
T
,
Maino
SA
.
Feather pulp culture for avian chromosomes with notes on the chromosomes of the peafowl and the ostrich
.
Experientia
.
1968
;
24
:
1923
9
.
30.
Guerra
MS
.
Reviewing the chromosome nomenclature of Levan et al
.
Rev Bras Genet
.
1986
;
9
:
741
3
.
31.
Sumner
AT
.
A simple technique for demonstrating centromeric heterochromatin
.
Exp Cell Res
.
1972
;
75
(
1
):
304
6
.
32.
White
TJ
,
Bruns
T
,
Lee
S
,
Taylor
J
.
Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics
. In:
Innis
MA
,
Gelfand
DH
,
Shinsky
JJ
,
White
TJ
, editors.
PCR protocols: a guide to methods and applications
.
San Diego
:
Academic Press
;
1990
. p.
315
22
.
33.
Kubat
Z
,
Hobza
R
,
Vyskot
B
,
Kejnovsky
E
.
Microsatellite accumulation on the Y chromosome in Silene latifolia
.
Genome
.
2008
;
51
(
5
):
350
6
.
34.
Ijdo
JW
,
Wells
RA
,
Baldini
A
,
Reeders
ST
.
Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR
.
Nucleic Acids Res
.
1991
;
19
(
17
):
4780
.
35.
Kretschmer
R
,
Santos
MS
,
Furo
IO
,
Oliveira
EHC
,
Cioffi
MB
.
FISH–in birds
. In:
Liehr
T
, editor.
Cytogenetics and molecular cytogenetics
. 1st ed.
Boca Raton
:
CRC Press
;
2022
. p.
263
76
.
36.
Shields
G
,
Barlow
JC
,
James
RD
.
Karyotypes of five species of Empidonax flycathers
.
Wilson Bull
.
1987
;
99
:
169
74
.
37.
Gunski
RJ
,
Cabanne
GS
,
Ledesma
MA
,
Del V Garnero
A
.
Análisis cariotípico de siete especies de Tiránidos (Tyrannidae)
.
Hornero
.
2000
;
15
(
2
):
103
9
.
38.
Rodrigues
BS
,
Kretschmer
R
,
Gunski
RJ
,
Garnero
ADV
,
O’Brien
PCM
,
Ferguson-Smith
M
, et al
.
Chromosome painting in tyrant flycatchers confirms a set of inversions shared by Oscines and Suboscines (Aves, Passeriformes)
.
Cytogenet Genome Res
.
2017
;
153
(
4
):
205
12
.
39.
Griffin
DK
,
Robertson
LBW
,
Tempest
HG
,
Skinner
BM
.
The evolution of the avian genome as revealed by comparative molecular cytogenetics
.
Cytogenet Genome Res
.
2007
;
117
(
1–4
):
64
77
.
40.
Kretschmer
R
,
Ferguson-Smith
MA
,
de Oliveira
EHC
.
Karyotype evolution in birds: from conventional staining to chromosome painting
.
Genes
.
2018
;
9
(
4
):
181
.
41.
Kapusta
A
,
Suh
A
.
Evolution of bird genomes: a transposon’s-eye view
.
Ann N Y Acad Sci
.
2017
;
1389
(
1
):
164
85
.
42.
Kumar
S
,
Suleski
M
,
Craig
JM
,
Kasprowicz
AE
,
Sanderford
M
,
Li
M
, et al
.
TimeTree 5: an expanded resource for species divergence times
.
Mol Biol Evol
.
2022
;
39
(
8
):
msac174
.
43.
Derjusheva
S
,
Kurganova
A
,
Habermann
F
,
Gaginskaya
E
.
High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds
.
Chromosome Res
.
2004
;
12
(
7
):
715
23
.
44.
Nishida
C
,
Ishijima
J
,
Kosaka
A
,
Tanabe
H
,
Habermann
FA
,
Griffin
DK
, et al
.
Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation
.
Chromosome Res
.
2008
;
16
(
1
):
171
81
.
45.
de Oliveira
EHC
,
Habermann
FA
,
Lacerda
O
,
Sbalqueiro
IJ
,
Wienberg
J
,
Müller
S
.
Chromosome reshuffling in birds of prey: the karyotype of the world’s largest eagle (harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus)
.
Chromosoma
.
2005
;
114
(
5
):
338
43
.
46.
de Oliveira
AM
,
Souza
GM
,
Toma
GA
,
dos Santos
N
,
dos Santos
RZ
,
Goes
CAG
, et al
.
Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype
.
Genome
.
2024
;
67
(
4
):
109
18
.
47.
Ellegren
H
.
Microsatellites: simple sequences with complex evolution
.
Nat Rev Genet
.
2004
;
5
(
6
):
435
45
.
48.
Pokorná
M
,
Kratochvíl
L
,
Kejnovský
E
.
Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox)
.
BMC Genet
.
2011
;
12
:
90
.
You do not currently have access to this content.