Introduction: Testis differentiation is initiated by the SRY gene on the Y chromosome in mammalian species. However, the Amami spiny rat, Tokudaia osimensis, lacks both the Y chromosome and the Sry gene and acquired a unique Sox9 regulatory mechanism via a male-specific duplication upstream of Sox9, without Sry. In general mammalian species, the SRY protein binds to a testis-specific enhancer to promote SOX9 gene expression. Several enhancers located upstream of Sox9/SOX9 have been reported in mice and humans. In particular, the binding of SRY to the highly conserved enhancer Enh13 is thought to be a common mechanism underlying testis differentiation and sex determination in mammals. Methods: Sequences of T. osimensis homologues of three Sox9 enhancers that were previously reported in mice, Enh8, Enh14, and Enh13, were determined. We performed in vitro assays to confirm enhancer activity involved in Sox9 regulation in T. osimensis. Results:T. osimensis Enh13 showed enhancer activity when co-transfected with NR5A1 and SOX9. Mouse Enh13 was activated by NR5A1 and SRY; however, T. osimensis Enh13 did not respond to SRY, even though the binding sites of SRY and NR5A1 were conserved. To identify the key sequence that is present in mouse but absent from T. osimensis, we performed reporter gene assays using vectors in which partial sequences of T. osimensis Enh13 were replaced with mouse sequences. For T. osimensis Enh13 in which the second half (approximately 430 bp) was replaced with the corresponding mouse sequence, activity in response to NR5A1 and SRY was recovered. Further, reporter assays revealed that multiple regions in the second half of the mouse Enh13 sequence are required for the response to NR5A1 and SRY. The latter 49 bp was particularly important and contained four binding sites for three transcription factors, POU2F1, HOXA3, and GATA1. Conclusion: We showed that there are unknown sequences responsible for the interaction between NR5A1 and SRY and mEnh13 based on comparative analyses of Sry-dependent and Sry-independent species. Our comparative analyses revealed new molecular mechanisms underlying mammalian sex determination.

1.
Koopman
P
,
Gubbay
J
,
Vivian
N
,
Goodfellow
P
,
Lovell-Badge
R
.
Male development of chromosomally female mice transgenic for Sry
.
Nature
.
1991
;
351
(
6322
):
117
21
. .
2.
Sinclair
AH
,
Berta
P
,
Palmer
MS
,
Hawkins
JR
,
Griffiths
BL
,
Smith
MJ
, et al
.
A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif
.
Nature
.
1990
;
346
(
6281
):
240
4
. .
3.
Sekido
R
,
Lovell-Badge
R
.
Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer
.
Nature
.
2008
;
453
(
7197
):
930
4
. .
4.
Gonen
N
,
Quinn
A
,
O’Neill
HC
,
Koopman
P
,
Lovell-Badge
R
.
Normal levels of sox9 expression in the developing mouse testis depend on the TES/TESCO enhancer, but this does not act alone
.
PLoS Genet
.
2017
;
13
(
1
):
e1006520
. .
5.
Kim
GJ
,
Sock
E
,
Buchberger
A
,
Just
W
,
Denzer
F
,
Hoepffner
W
, et al
.
Copy number variation of two separate regulatory regions upstream of SOX9 causes isolated 46,XY or 46,XX disorder of sex development
.
J Med Genet
.
2015
;
52
(
4
):
240
7
. .
6.
Croft
B
,
Ohnesorg
T
,
Hewitt
J
,
Bowles
J
,
Quinn
A
,
Tan
J
, et al
.
Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9
.
Nat Commun
.
2018
;
9
(
1
):
5319
. .
7.
Gonen
N
,
Futtner
CR
,
Wood
S
,
Garcia-Moreno
SA
,
Salamone
IM
,
Samson
SC
, et al
.
Sex reversal following deletion of a single distal enhancer of Sox9
.
Science
.
2018
;
360
(
6396
):
1469
73
. .
8.
Ogawa
Y
,
Terao
M
,
Hara
S
,
Tamano
M
,
Okayasu
H
,
Kato
T
, et al
.
Mapping of a responsible region for sex reversal upstream of Sox9 by production of mice with serial deletion in a genomic locus
.
Sci Rep
.
2018
;
8
(
1
):
17514
. .
9.
Ridnik
M
,
Schoenfelder
S
,
Gonen
N
.
Cis-regulatory control of mammalian sex determination
.
Sex Dev
.
2021
;
15
(
5–6
):
317
34
. .
10.
Robson
MI
,
Ringel
AR
,
Mundlos
S
.
Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D
.
Mol Cell
.
2019
;
74
(
6
):
1110
22
. .
11.
Honda
T
,
Suzuki
H
,
Itoh
M
.
An unusual sex chromosome constitution found in the Amami spinous country-rat, Tokudaia osimensis osimensis
.
Jpn J Genet
.
1977
;
52
(
3
):
247
9
. .
12.
Sutou
S
,
Mitsui
Y
,
Tsuchiya
K
.
Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp
.
Mamm Genome
.
2001
;
12
(
1
):
17
21
. .
13.
Murata
C
,
Yamada
F
,
Kawauchi
N
,
Matsuda
Y
,
Kuroiwa
A
.
Multiple copies of SRY on the large Y chromosome of the Okinawa spiny rat, Tokudaia muenninki
.
Chromosome Res
.
2010
;
18
(
6
):
623
34
. .
14.
Nakamura
T
,
Kuroiwa
A
,
Nishida-Umehara
C
,
Matsubara
K
,
Yamada
F
,
Matsuda
Y
.
Comparative chromosome painting map between two Ryukyu spiny rat species, Tokudaia osimensis and Tokudaia tokunoshimensis (Muridae, Rodentia)
.
Chromosome Res
.
2007
;
15
(
6
):
799
806
. .
15.
Kimura
R
,
Murata
C
,
Kuroki
Y
,
Kuroiwa
A
.
Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia
.
PLoS One
.
2014
;
9
(
9
):
e108779
. .
16.
Otake
T
,
Kuroiwa
A
.
Molecular mechanism of male differentiation is conserved in the SRY-absent mammal, Tokudaia osimensis
.
Sci Rep
.
2016
;
6
(
1
):
32874
. .
17.
Terao
M
,
Ogawa
Y
,
Takada
S
,
Kajitani
R
,
Okuno
M
,
Mochimaru
Y
, et al
.
Turnover of mammal sex chromosomes in the Sry-deficient Amami spiny rat is due to male-specific upregulation of Sox9
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
49
):
e2211574119
. .
18.
Kobayashi
T
,
Yamada
F
,
Hashimoto
T
,
Abe
S
,
Matsuda
Y
,
Kuroiwa
A
.
Exceptional minute sex-specific region in the X0 mammal, Ryukyu spiny rat
.
Chromosome Res
.
2007
;
15
(
2
):
175
87
. .
19.
Kobayashi
T
,
Yamada
F
,
Hashimoto
T
,
Abe
S
,
Matsuda
Y
,
Kuroiwa
A
.
Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat
.
Chromosome Res
.
2008
;
16
(
4
):
587
93
. .
20.
Washio
K
,
Mizushima
S
,
Jogahara
T
,
Kuroiwa
A
.
Regulation of the Sox3 gene in an X0/X0 mammal without Sry, the Amami spiny rat, Tokudaia osimensis
.
Cytogenet Genome Res
.
2019
;
159
(
3
):
143
50
. .
21.
Yee
SP
,
Rigby
PW
.
The regulation of myogenin gene expression during the embryonic development of the mouse
.
Genes Dev
.
1993
;
7
(
7a
):
1277
89
. .
22.
Ho
SN
,
Hunt
HD
,
Horton
RM
,
Pullen
JK
,
Pease
LR
.
Site-directed mutagenesis by overlap extension using the polymerase chain reaction
.
Gene
.
1989
;
77
(
1
):
51
9
. .
23.
Santana-Garcia
W
,
Castro-Mondragon
JA
,
Padilla-Gálvez
M
,
Nguyen
NTT
,
Elizondo-Salas
A
,
Ksouri
N
, et al
.
Rsat 2022: regulatory sequence analysis tools
.
Nucleic Acids Res
.
2022
;
50
(
W1
):
W670
6
. .
24.
Castro-Mondragon
JA
,
Riudavets-Puig
R
,
Rauluseviciute
I
,
Lemma
RB
,
Turchi
L
,
Blanc-Mathieu
R
, et al
.
Jaspar 2022: the 9th release of the open-access database of transcription factor binding profiles
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D165
73
. .
25.
Farré
D
,
Roset
R
,
Huerta
M
,
Adsuara
JE
,
Roselló
L
,
Albà
MM
, et al
.
Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN
.
Nucleic Acids Res
.
2003
;
31
(
13
):
3651
3
. .
26.
Messeguer
X
,
Escudero
R
,
Farré
D
,
Núñez
O
,
Martínez
J
,
Albà
MM
.
PROMO: detection of known transcription regulatory elements using species-tailored searches
.
Bioinformatics
.
2002
;
18
(
2
):
333
4
. .
27.
Kuroiwa
A
,
Handa
S
,
Nishiyama
C
,
Chiba
E
,
Yamada
F
,
Abe
S
, et al
.
Additional copies of CBX2 in the genomes of males of mammals lacking SRY, the Amami spiny rat (Tokudaia osimensis) and the Tokunoshima spiny rat (Tokudaia tokunoshimensis)
.
Chromosome Res
.
2011
;
19
(
5
):
635
44
. .
28.
Georges
A
,
l’Hôte
D
,
Todeschini
AL
,
Auguste
A
,
Legois
B
,
Zider
A
, et al
.
The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells
.
Elife
.
2014
;
3
:
e04207
. .
29.
Nicol
B
,
Grimm
SA
,
Gruzdev
A
,
Scott
GJ
,
Ray
MK
,
Yao
HH
.
Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads
.
Hum Mol Genet
.
2018
;
27
(
24
):
4273
87
. .
30.
Rossitto
M
,
Déjardin
S
,
Rands
CM
,
Gras
SL
,
Migale
R
,
Rafiee
M-R
, et al
.
TRIM28-dependent SUMOylation protects the adult ovary from the male pathway
.
Nat Commun
.
2022
;
13
(
1
):
4412
. .
31.
Kang
J
,
Shakya
A
,
Tantin
D
.
Stem cells, stress, metabolism and cancer: a drama in two Octs
.
Trends Biochem Sci
.
2009
;
34
(
10
):
491
9
. .
32.
Sturm
RA
,
Das
G
,
Herr
W
.
The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain
.
Genes Dev
.
1988
;
2
(
12a
):
1582
99
. .
33.
Mace
KA
,
Hansen
SL
,
Myers
C
,
Young
DM
,
Boudreau
N
.
HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair
.
J Cell Sci
.
2005
;
118
(
Pt 12
):
2567
77
. .
34.
Ito
E
,
Toki
T
,
Ishihara
H
,
Ohtani
H
,
Gu
L
,
Yokoyama
M
, et al
.
Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis
.
Nature
.
1993
;
362
(
6419
):
466
8
. .
35.
Gonçalves
MFF
,
Lacerda
SMSN
,
Lara
NLM
,
Oliveira
CFA
,
Figueiredo
AFA
,
Brener
MRG
, et al
.
GATA-1 mutation alters the spermatogonial phase and steroidogenesis in adult mouse testis
.
Mol Cell Endocrinol
.
2022
;
542
:
111519
. .
You do not currently have access to this content.