Abstract
Introduction: The mapping of the satellite DNA on chromosomes is vital to understanding the distribution and evolution of repetitions in the genome since these chromosomal studies have shown the origin, evolutionary mode, and function of repetitive sequences. This study aimed to prospect the satellitome and determine its location in the genome of two cryptic species of Hypostomus, H. aff. ancistroides and H. ancistroides, with and without XX/XY sexual chromosome system. Methods: Mitotic chromosomes and DNA extraction were obtained according to protocols. After the whole genome sequencing, the satDNAs were retrieved, amplified, and hybridized in chromosome preparations for male and female individuals. Results: We found 30 satellite families (47 variants, two superfamilies) in H. ancistroides and 38 satellite families (45 variants, four superfamilies) in H. aff. ancistroides. The sequences varied from 14 bp to 2,662 bp in H. ancistroides and from 14 bp to 2,918 bp in H. aff. ancistroides. We did not observe any tandem repeats that were exclusive to each of the libraries; however, many sequences showed very different abundances and copy numbers between the libraries. Four satDNAs did not hybridize on the chromosomes of either species. Conversely, one satDNA hybridized in both species, HxySat1-80. However, the phenotypes found varied among species, populations, and in the same individual. There was no sign of HanSat3-464 and HanSat11-335 in any individuals of H. aff. ancistroides, but markings were in the chromosomes of H. ancistroides. HxySat12-1127 and HxySat8-52, on the other hand, were only hybridized in H. aff. ancistroides, while H. ancistroides had a negative sign. No hybridization of satDNAs was found in the X and Y sex chromosomes as they were mostly composed of euchromatin. Conclusion: We distinguish H. aff. ancistroides as genetically different from H. ancistroides, recognizing that such characteristics go far beyond morphological, karyotypic, and molecular data. Our data support the differential abundance and location of satellite DNAs and confirm that many organisms, including fish, have repetitive sequences that validate the library hypothesis. All found and validated satDNAs and the characterization of the satellitomes of the two species represent important contributions to cytogenomic studies of the genus Hypostomus.