Bambara groundnut (Vigna subterranea L. Verdc.) is an un-derutilized minor legume crop with climate resilience and great potential use in world agriculture. This study aimed to cytogenetically characterize the genome and chromosome properties of Bambara groundnut. We cloned, sequenced, and mapped a 50-bp centromere-specific tandem repeat on all chromosomes. In addition, a 400-bp subtelomeric repeat was discovered and mapped on a single pair of chromosomes. A Bambara groundnut karyotype was constructed using these novel repeats along with ribosomal RNA genes (45S and 5S) and telomeric DNA sequences. This study provides the first analysis of the genome and chromosome properties of Bambara groundnut. We discuss our findings in relation to genetic improvement of Bambara groundnut and centromere evolution in legume species.

1.
Aliyu
S
,
Massawe
F
,
Mayes
S
.
Genetic diversity and population structure of bambara groundnut (Vigna subterranea (L.) Verdc.): synopsis of the past two decades of analysis and implications for crop improvement programmes
.
Genet Resour Crop Evol
.
2016
;
63
(
6
):
925
43
.
2.
Cannon
SB
,
Ilut
D
,
Farmer
AD
,
Maki
SL
,
May
GD
,
Singer
SR
,
Polyploidy did not predate the evolution of nodulation in all legumes
.
PLoS One
.
2010
;
5
(
7
):
e11630
.
3.
Chang
Y
,
Liu
H
,
Liu
M
,
Liao
X
,
Sahu
SK
,
Fu
Y
,
The draft genomes of five agriculturally important African orphan crops
.
Gigascience
.
2019
;
8
(
3
):
giy152
.
4.
Choi
H-W
,
Kim
M-Y
,
Lee
S-H
,
Sultana
S
,
Bang
J-W
.
Molecular cytogenetic analysis of the Vigna species distributed in Korea
.
Genes Genom
.
2013
;
35
(
2
):
257
64
.
5.
Easterling
KA
,
Pitra
NJ
,
Morcol
TB
,
Aquino
JR
,
Lopes
LG
,
Bussey
KC
,
Identification of tandem repeat families from long-read sequences of Humulus lupulus
.
PLoS One
.
2020
;
15
(
6
):
e0233971
.
6.
Galasso
I
,
Pignone
D
,
Harrison
GE
,
Heslop Harrison
JS
,
Schmidt
T
.
Location of two repeated DNA sequences of Vigna unguiculata (L.) Walp. on chromosomes and extended DNA fibres by FISH
.
J Genet Breed
.
1999
(
53
):
215
21
.
7.
Gerlach
WL
,
Bedbrook
JR
.
Cloning and characterization of ribosomal RNA genes from wheat and barley
.
Nucleic Acids Res
.
1979
;
7
(
7
):
1869
85
.
8.
Hendre
PS
,
Muthemba
S
,
Kariba
R
,
Muchugi
A
,
Fu
Y
,
Chang
Y
,
African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops
.
Planta
.
2019
;
250
(
3
):
989
1003
.
9.
Ho
WK
,
Chai
HH
,
Kendabie
P
,
Ahmad
NS
,
Jani
J
,
Massawe
F
,
Integrating genetic maps in bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes
.
BMC Genomics
.
2017
;
18
(
1
):
192
.
10.
Houben
A
,
Schubert
I
.
DNA and proteins of plant centromeres
.
Curr Opin Plant Biol
.
2003
;
6
(
6
):
554
60
.
11.
Ishii
T
,
Juranić
M
,
Maheshwari
S
,
Bustamante
FO
,
Vogt
M
,
Salinas-Gamboa
R
,
Unequal contribution of two paralogous CENH3 variants in cowpea centromere function
.
Commun Biol
.
2020
;
3
(
1
):
775
.
12.
Iwata
A
,
Tek
AL
,
Richard
MMS
,
Abernathy
B
,
Fonsêca
A
,
Schmutz
J
,
Identification and characterization of functional centromeres of the common bean
.
Plant J
.
2013
;
76
(
1
):
47
60
.
13.
Iwata-Otsubo
A
,
Lin
JY
,
Gill
N
,
Jackson
SA
.
Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis
.
Chromosome Res
.
2016
;
24
(
2
):
197
216
.
14.
Jiang
J
,
Birchler
JA
,
Parrott
WA
,
Dawe
RK
.
A molecular view of plant centromeres
.
Trends Plant Sci
.
2003
;
8
(
12
):
570
5
.
15.
Kang
YJ
,
Kim
SK
,
Kim
MY
,
Lestari
P
,
Kim
KH
,
Ha
BK
,
Genome sequence of mungbean and insights into evolution within Vigna species
.
Nat Commun
.
2014
;
5
:
5443
.
16.
Khan
MMH
,
Rafii
MY
,
Ramlee
SI
,
Jusoh
M
,
Al Mamun
M
.
Genetic analysis and selection of bambara groundnut (Vigna subterranea [L.] Verdc.) landraces for high yield revealed by qualitative and quantitative traits
.
Sci Rep
.
2021
;
11
(
1
):
7597
.
17.
Korboe HM. Genome and chromosome properties of bambara groundnut, Vigna subterranea. 2020. http://acikerisim.ohu.edu.tr/xmlui/handle/11480/7571
18.
Lavin
M
,
Herendeen
PS
,
Wojciechowski
MF
.
Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary
.
Syst Biol
.
2005
;
54
(
4
):
575
94
.
19.
Leitch, Johnston E, Pellicer J, Hidalgo O, Bennett MD. Plant DNA C-values database (release 7.1, Apr 2019). 2019. https://cvalues.science.kew.org/search
20.
Mayes
S
,
Ho
WK
,
Chai
HH
,
Gao
X
,
Kundy
AC
,
Mateva
KI
,
Bambara groundnut: an exemplar underutilised legume for resilience under climate change
.
Planta
.
2019
;
250
(
3
):
803
20
.
21.
Mirzaghaderi
G
,
Marzangi
K
.
IdeoKar: an ideogram constructing and karyotype analyzing software
.
Caryologia
.
2015
;
68
(
1
):
31
5
.
22.
Muhammad
I
,
Rafii
MY
,
Ramlee
SI
,
Nazli
MH
,
Harun
AR
,
Oladosu
Y
,
Exploration of bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized crop, to aid global food security: varietal improvement, genetic diversity and processing
.
Agronomy
.
2020
;
10
(
6
):
766
.
23.
Neumann
P
,
Nouzová
M
,
Macas
J
.
Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.)
.
Genome
.
2001
;
44
(
4
):
716
28
.
24.
Novák
P
,
Neumann
P
,
Pech
J
,
Steinhaisl
J
,
Macas
J
.
RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads
.
Bioinformatics
.
2013
;
29
(
6
):
792
3
.
25.
Novák
P
,
Ávila Robledillo
L
,
Koblížková
A
,
Vrbová
I
,
Neumann
P
,
Macas
J
.
TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads
.
Nucleic Acids Res
.
2017
;
45
(
12
):
e111
.
26.
Robledillo
,
Koblížková
A
,
Novák
P
,
Böttinger
K
,
Vrbová
I
,
Neumann
P
,
Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing
.
Sci Rep
.
2018
;
8
(
1
):
5838
.
27.
Robledillo
,
Neumann
P
,
Koblížková
A
,
Novák
P
,
Vrbová
I
,
Macas
J
.
Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae
.
Mol Biol Evol
.
2020
;
37
(
8
):
2341
56
.
28.
Saint-Leandre
B
,
Levine
MT
.
The telomere paradox: stable genome preservation with rapidly evolving proteins
.
Trends Genet
.
2020
;
36
(
4
):
232
42
.
29.
Santos
AP
,
Gaudin
V
,
Mozgová
I
,
Pontvianne
F
,
Schubert
D
,
Tek
AL
,
Tidying-up the plant nuclear space: domains, functions, and dynamics
.
J Exp Bot
.
2020
;
71
(
17
):
5160
78
.
30.
Schmidt
T
,
Heslop-Harrison
JS
.
Genomes, genes and junk: the large-scale organization of plant chromosomes
.
Trends Plant Sci
.
1998
;
3
(
5
):
195
9
.
31.
Schubert
I
,
Lysak
MA
.
Interpretation of karyotype evolution should consider chromosome structural constraints
.
Trends Genet
.
2011
;
27
(
6
):
207
16
.
32.
She
CW
,
Jiang
XH
,
Ou
LJ
,
Liu
J
,
Long
KL
,
Zhang
LH
,
Molecular cytogenetic characterisation and phylogenetic analysis of the seven cultivated Vigna species (Fabaceae)
.
Plant Biol
.
2015
;
17
(
1
):
268
80
.
33.
Takahashi
Y
,
Somta
P
,
Muto
C
,
Iseki
K
,
Naito
K
,
Pandiyan
M
,
Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions
.
PLoS One
.
2016
;
11
(
1
):
e0147568
.
34.
Tek
AL
,
Kashihara
K
,
Murata
M
,
Nagaki
K
.
Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon
.
Chromosome Res
.
2010
;
18
(
3
):
337
47
.
35.
Tek
AL
,
Kashihara
K
,
Murata
M
,
Nagaki
K
.
Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat
.
Chromosome Res
.
2011
;
19
(
8
):
969
78
.
36.
Tomooka
N
,
Naito
K
,
Kaga
A
,
Sakai
H
,
Isemura
T
,
Ogiso-Tanaka
E
,
Evolution, domestication and neo-domestication of the genus Vigna
.
Plant Genet Res
.
2014
;
12
(
1
):
168
71
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.