Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that Menolird18, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in Cucumis melo, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, Menolird18 was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of Menolird18 were found in centromeric and rDNA regions of mitotic chromosomes suggests that Menolird18 is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of Menolird18 in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (C. melo) and cucumber (C. sativus) genomes.

1.
Casacuberta
JM
,
Santiago
N
.
Plant LTR-retrotransposons and MITEs: Control of transposition and impact on the evolution of plant genes and genomes
.
Gene
.
2003
;
311
:
1
11
. .
2.
Cavrak
VV
,
Lettner
N
,
Jamge
S
,
Kosarewicz
A
,
Bayer
LM
,
Mittelsten Scheid
O
.
How a retrotransposon exploits the plant's heat stress response for its activation
.
PLoS Genet
.
2014
;
10
(
1
):
e1004115
. .
3.
Cheng
Z
,
Dong
F
,
Langdon
T
,
Ouyang
S
,
Buell
CR
,
Gu
M
, et al
Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon
.
Plant Cell
.
2002
;
14
(
8
):
1691
704
. .
4.
Čížková
J
,
Hřibová
E
,
Humplíková
L
,
Christelová
P
,
Suchánková
P
,
Doležel
J
.
Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.)
.
PLoS One
.
2013;8:e54808
.
5.
Dubcovsky
J
,
Dvorák
J
.
Ribosomal RNA multigene loci: Nomads of the triticeae genomes
.
Genetics
.
1995
;
140
(
4
):
1367
77
.
6.
Fujiwara
H
.
Site-specific non-LTR retrotransposons
.
Microbiol Spectr
.
2015
;
3
:
25
32
.
7.
Fujiwara
H
,
Ogura
T
,
Takada
N
,
Miyajima
N
,
Ishikawa
H
,
Maekawa
H
.
Introns and their flanking sequences of Bombyx mori rDNA
.
Nucleic Acids Res
.
1984
;
12
(
17
):
6861
9
. .
8.
Ganal
M
,
Hemleben
V
.
Comparison of the ribosomal RNA genes in four closely related Cucurbitaceae
.
Plant Syst Evol
.
1986
;
154
(
1-2
):
63
77
. .
9.
Gao
D
,
Chen
J
,
Chen
M
,
Meyers
BC
,
Jackson
S
.
A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes
.
PLoS One
.
2012
;
7
(
2
):
e32010
. .
10.
Garcia-Mas
J
,
Benjak
A
,
Sanseverino
W
,
Bourgeois
M
,
Mir
G
,
González
VM
, et al
The genome of melon (Cucumis melo L.)
.
Proc Natl Acad Sci USA
.
2012
;
109
(
29
):
11872
7
. .
11.
Gerlach
WL
,
Bedbrook
JR
.
Cloning and characterization of ribosomal RNA genes from wheat and barley
.
Nucleic Acids Res
.
1979
;
7
(
7
):
1869
85
. .
12.
Gindullis
F
,
Desel
C
,
Galasso
I
,
Schmidt
T
.
The large-scale organization of the centromeric region in Beta species
.
Genome Res
.
2001
;
11
(
2
):
253
65
. .
13.
Han
J
,
Masonbrink
RE
,
Shan
W
,
Song
F
,
Zhang
J
,
Yu
W
, et al
Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton
.
Plant J
.
2016
;
88
(
6
):
992
1005
. .
14.
Han
YH
,
Zhang
ZH
,
Liu
JH
,
LuHuang
JYSW
,
Huang
SW
,
Jin
WW
.
Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization
.
Cytogenet Genome Res
.
2008
;
122
(
1
):
80
8
. .
15.
Havlová
K
,
Dvořáčková
M
,
Peiro
R
,
Abia
D
,
Mozgová
I
,
Vansáčová
L
, et al
Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana
.
Plant Mol Biol
.
2016
;
92
(
4-5
):
457
71
. .
16.
Heitkam
T
,
Schmidt
T
.
BNR - a LINE family from Beta vulgaris - contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes
.
Plant J
.
2009
;
59
(
6
):
872
82
. .
17.
Hemleben
V
,
Leweke
B
,
Roth
A
,
Stadler
J
.
Organization of highly repetitive satellite DNA of two Cucurbitaceae species (Cucumis melo and Cucumis sativus)
.
Nucleic Acids Res
.
1982
;
10
(
2
):
631
44
. .
18.
Huang
S
,
Li
R
,
Zhang
Z
,
LiGu
LX
,
Gu
X
,
Fan
W
, et al
The genome of the cucumber, Cucumis sativus L
.
Nat Genet
.
2009
;
41
(
12
):
1275
81
. .
19.
Huang
Y
,
Yu
F
,
Li
X
,
Luo
L
,
Wu
J
,
Yang
Y
, et al
Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum species
.
PLoS One
.
2017
;
12
(
8
):
e0183447
20
. .
20.
Hudakova
S
,
Michalek
W
,
Presting
GG
,
ten Hoopen
R
,
dos Santos
K
,
Jasencakova
Z
, et al
Sequence organization of barley centromeres
.
Nucleic Acids Res
.
2001
;
29
(
24
):
5029
35
. .
21.
Jackson
SA
,
Wang
ML
,
Goodman
HM
,
Jiang
J
.
Application of fiber-FISH in physical mapping of Arabidopsis thaliana
.
Genome
.
1998
;
41
(
4
):
566
72
. .
22.
Jakubczak
JL
,
Burke
WD
,
Eickbush
TH
.
Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects
.
Proc Natl Acad Sci USA
.
1991
;
88
(
8
):
3295
9
. .
23.
Jo
SH
,
Koo
DH
,
Kim
JF
,
HurLee
CGS
,
Lee
S
,
Yang
TJ
, et al
Evolution of ribosomal DNA-derived satellite repeat in tomato genome
.
BMC Plant Biol
.
2009
;
9
:
42
. .
24.
Kojima
KK
,
Fujiwara
H
.
Evolution of target specificity in R1 clade non-LTR retrotransposons
.
Mol Biol Evol
.
2003
;
20
(
3
):
351
61
. .
25.
Kojima
KK
,
Fujiwara
H
.
Cross-genome screening of novel sequence-specific non-LTR retrotransposons: Various multicopy RNA genes and microsatellites are selected as targets
.
Mol Biol Evol
.
2004
;
21
(
2
):
207
17
. .
26.
Kojima
KK
,
Fujiwara
H
.
Long-term inheritance of the 28S rDNA-specific retrotransposon R2
.
Mol Biol Evol
.
2005
;
22
(
11
):
2157
65
. .
27.
Kojima
KK
,
Kuma
K
,
Toh
H
,
Fujiwara
H
.
Identification of rDNA-specific non-LTR retrotransposons in Cnidaria
.
Mol Biol Evol
.
2006
;
23
(
10
):
1984–93
. .
28.
Kojima
KK
,
Seto
Y
,
Fujiwara
H
.
The wide distribution and change of target specificity of R2 non-LTR retrotransposons in animals
.
PLoS One
.
2016
;
11
(
9
):
e0163496
. .
29.
Komatsu
M
,
Shimamoto
K
,
Kyozuka
J
.
Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma
.
Plant Cell
.
2003
;
15
(
8
):
1934
44
. .
30.
Koo
DH
,
Nam
YW
,
Choi
D
,
Bang
JW
,
de Jong
H
,
Hur
Y
.
Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences
.
Chromosome Res
.
2010
;
18
(
3
):
325
36
. .
31.
Kubo
Y
,
Okazaki
S
,
Anzai
T
,
Fujiwara
H
.
Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects
.
Mol Biol Evol
.
2001
;
18
(
5
):
848
57
. .
32.
Layat
E
,
Sáez-Vásquez
J
,
Tourmente
S
.
Regulation of pol I-transcribed 45S rDNA and pol III-transcribed 5S rDNA in Arabidopsis
.
Plant Cell Physiol
.
2012
;
53
(
2
):
267
76
. .
33.
Lima-de-Faria
A
.
The chromosome field: I. Prediction of the location of ribosomal cistrons
.
Hereditas
.
1976
;
83
:
1
22
.
34.
Liu
C
,
Liu
J
,
Li
H
,
Zhang
Z
,
Han
Y
,
Huang
S
, et al
Karyotyping in melon (Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization
.
Cytogenet Genome Res
.
2010
;
129
(
1-3
):
241
9
. ..
35.
Luan
DD
,
Korman
MH
,
Jakubczak
JL
,
Eickbush
TH
.
Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition
.
Cell
.
1993
;
72
(
4
):
595
605
. .
36.
Makarevitch
I
,
Waters
AJ
,
West
PT
,
Stitzer
M
,
Hirsch
CN
,
Ross-Ibarra
J
, et al
Transposable elements contribute to activation of maize genes in response to abiotic stress
.
PLoS Genet
.
2015
;
11
(
1
):
e1004915
. .
37.
Miller
JT
,
Dong
F
,
Jackson
SA
,
Song
J
,
Jiang
J
.
Retrotransposon-related DNA sequences in the centromeres of grass chromosomes
.
Genetics
.
1998a
;
150
(
4
):
1615
23
.
38.
Miller
JT
,
Jackson
SA
,
Nasuda
S
,
Gill
BS
,
Jiang
J
.
Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor
.
Theor Appl Genet
.
1998b
;
96
(
6-7
):
832
9
. .
39.
Minamikawa
MF
,
Fujii
D
,
Kakui
H
,
Kotoda
N
,
Sassa
H
.
Identifcation of an S-RNase binding protein1 (SBP1) homolog of apple (Malus domestica)
.
Plant Biotechnol
.
2013
;
30
:
119
23
.
40.
Morata
J
,
Tormo
M
,
Alexiou
KG
,
Vives
C
,
Ramos-Onsins
SE
,
Garcia-Mas
J
, et al
The evolutionary consequences of transposon-related pericentromer expansion in melon
.
Genome Biol Evol
.
2018
;
10
(
6
):
1584
95
. .
41.
Nagaki
K
,
Song
J
,
Stupar
RM
,
Parokonny
AS
,
Yuan
Q
,
Ouyang
S
, et al
Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres
.
Genetics
.
2003
;
163
(
2
):
759
70
.
42.
Nagaki
K
,
Tanaka
K
,
Yamaji
N
,
Kobayashi
H
,
Murata
M
.
Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat
.
Front Plant Sci
.
2015
;
6
:
912
2
. .
43.
Noma
K
,
Ohtsubo
H
,
Ohtsubo
E
.
A new class of LINEs (ATLN-L ) from Arabidopsis thaliana with extraordinary structural features
.
DNA Res
.
2001
;
8
:
291
9
.
44.
Nouroz
F
,
Noreen
S
,
Khan
MF
,
Ahmed
S
,
Heslop-Harrison
JSP
.
Identification and characterization of mobile genetic elements LINEs from Brassica genome
.
Gene
.
2017
;
627
:
94
105
. .
45.
Pedrosa-Harand
A
,
de Almeida
CC
,
Mosiolek
M
,
Blair
MW
,
Schweizer
D
,
Guerra
M
.
Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution
.
Theor Appl Genet
.
2006
;
112
(
5
):
924
33
. .
46.
Presting
GG
,
Malysheva
L
,
Fuchs
J
,
Schubert
I
.
A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes
.
Plant J
.
1998
;
16
(
6
):
721
8
. .
47.
Ramallo
E
,
Kalendar
R
,
Schulman
AH
,
Martínez-Izquierdo
JA
.
Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light
.
Plant Mol Biol
.
2008
;
66
(
1-2
):
137
50
. .
48.
Raskina
O
,
Barber
JC
,
Nevo
E
,
Belyayev
A
.
Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes
.
Cytogenet Genome Res
.
2008
;
120
(
3-4
):
351
7
. .
49.
Raskina
O
,
Belyayev
A
,
Nevo
E
.
Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations
.
Proc Natl Acad Sci USA
.
2004a
;
101
(
41
):
14818
23
. .
50.
Raskina
O
,
Belyayev
A
,
Nevo
E
.
Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch
.
Chromosome Res
.
2004b
;
12
(
2
):
153
61
. .
51.
Rogers
SO
,
Bendich
AJ
.
Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer
.
Plant Mol Biol
.
1987
;
9
(
5
):
509
20
. .
52.
Roiha
H
,
Glover
DM
.
Duplicated rDNA sequences of variable lengths flanking the short type I insertions in the rDNA of Drosophila melanogaster
.
Nucleic Acids Res
.
1981
;
9
(
21
):
5521
32
. .
53.
Schmidt
T
.
LINEs, SINEs and repetitive DNA: Non-LTR retrotransposons in plant genomes
.
Plant Mol Biol
.
1999
;
40
(
6
):
903
10
. .
54.
Schubert
I
.
Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae s. lat.)? -- Inferences from the specifity of silver staining
.
Plant Syst Evol
.
1984
;
144
:
291
305
.
55.
Schubert
I
,
Wobus
U
.
In situ hybridization confirms jumping nucleolus organizing regions in Allium
.
Chromosoma
.
1985
;
92
(
2
):
143
8
. .
56.
Schwarz-Sommer
Z
,
Leclercq
L
,
Göbel
E
,
Saedler
H
.
Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons
.
EMBO J
.
1987
;
6
(
13
):
3873
80
.
57.
Schwarzacher
T
,
Heslop-Harrison
P
.
Practical in situ Hyridization
.
Oxford
:
BIOS Scientific Publishers Ltd
;
2000
. p.
203
.
58.
Sebastian
P
,
Schaefer
H
,
Telford
IR
,
Renner
SS
.
Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia
.
Proc Natl Acad Sci USA
.
2010
;
107
(
32
):
14269
73
. .
59.
Setiawan
AB
.
Molecular cytogenetic studies on satellite DNA and retrotransposon in Cucumis species. PhD Thesis,
Chiba University
;
2018
.
60.
Setiawan
AB
,
Teo
CH
,
Kikuchi
S
,
Sassa
H
,
Kato
K
,
Koba
T
.
Cytogenetic variation in Cucumis accessions revealed by fluorescence in situ hybridization using ribosomal RNAs genes as the probes
.
Chromosome Sci
.
2018a
;
21
:
67
73
.
61.
Setiawan
AB
,
Teo
CH
,
Kikuchi
S
,
Sassa
H
,
Koba
T
.
An improved method for inducing prometaphase chromosomes in plants
.
Mol Cytogenet
.
2018b
;
11
:
32
. .
62.
Setiawan
AB
,
Teo
CH
,
Kikuchi
S
,
Sassa
H
,
Kato
K
,
Koba
T
.
Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189
.
PLoS One
.
2020
;
15
(
1
):
e0227578
. .
63.
Tagashira
N
,
Hoshi
Y
,
Yagi
K
,
Plader
W
,
Malepszy
S
.
Cytogenetic comparison among three cultivars of cucumber (Cucumis sativus L.) by using post-heated DAPI band, 45S and 5S rDNA site
.
Chromosome Bot
.
2009
;
4
:
19
23
.
64.
Vershinin
AV
,
Druka
A
,
Alkhimova
AG
,
Kleinhofs
A
,
Heslop-Harrison
JS
.
LINEs and gypsy-like retrotransposons in Hordeum species
.
Plant Mol Biol
.
2002
;
49
(
1
):
1
14
. .
65.
Wibowo
A
,
Setiawan
AB
,
Purwantoro
A
,
Kikuchi
S
,
Koba
T
.
Cytological variation of rRNA genes and subtelomeric repeat sequences in Indonesian and Japanese cucumber accessions
.
Chromosome Sci
.
2018
;
21
:
81
7
.
66.
Yamashita
H
,
Tahara
M
.
A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome
.
Plant Mol Biol
.
2006
;
61
(
1-2
):
79
94
. .
67.
Yang
K
,
Robin
AH
,
Yi
GE
,
Lee
J
,
Chung
MY
,
Yang
TJ
, et al
Diversity and inheritance of intergenic spacer sequences of 45S ribosomal DNA among accessions of Brassica oleracea L. var. capitata
.
Int J Mol Sci
.
2015
;
16
(
12
):
28783
99
. .
68.
Zhang
ZT
,
Yang
SQ
,
Li
ZA
,
Zhang
YX
,
Wang
YZ
,
Cheng
CY
, et al
Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis
.
Genome
.
2016
;
59
(
7
):
449
57
. .
69.
Zingler
N
,
Weichenrieder
O
,
Schumann
GG
.
APE-type non-LTR retrotransposons: determinants involved in target site recognition
.
Cytogenet Genome Res
.
2005
;
110
(
1-4
):
250
68
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.