Sea turtles are considered flagship species for marine biodiversity conservation and are considered to be at varying risk of extinction globally. Cases of hybridism have been reported in sea turtles, but chromosomal analyses are limited to classical karyotype descriptions and a few molecular cytogenetic studies. In order to compare karyotypes and understand evolutive mechanisms related to chromosome dif-ferentiation in this group, Chelonia mydas, Caretta caretta, Eretmochelys imbricata, and Lepidochelys olivacea were cytogenetically characterized in the present study. When the obtained cytogenetic data were compared with the putative ancestral Cryptodira karyotype, the studied species showed the same diploid number (2n) of 56 chromosomes, with some variations in chromosomal morphology (karyotypic formula) and minor changes in longitudinal band locations. In situ localization using a 18S ribosomal DNA probe indicated a homeologous microchromosome pair bearing a 45S ribosomal DNA locus and size heteromorphism in all 4 species. Interstitial telomeric sites were identified in a microchromosome pair in C. mydas and C. caretta. The data showed that interspecific variations occurred in chromosomal sets among the Cheloniidae species, in addition to other Cryptodira karyotypes. These variations generated lineage-specific karyotypic diversification in sea turtles, which will have considerable implications for hybrid recognition and for the study, the biology, ecology, and evolutionary history of regional and global populations. Furthermore, we demonstrated that some chromosome rearrangements occurred in sea turtle species, which is in conflict with the hypothesis of conserved karyotypes in this group.

1.
Altschul
SF
,
Madden
TL
,
Schäffer
AA
,
Zhang
J
,
Zhang
Z
,
Miller
W
, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
.
Nucleic Acids Res
.
1997
;
25
(
17
):
3389
402
. .
2.
Arantes
LS
,
Vilaca
ST
,
Mazzoni
CJ
,
Santos
FR
.
New genetic insights about hybridization and population structure of hawksbill and loggerhead turtles from Brazil
.
J Hered
.
2020
;
111
(
5
):
444
56
.
3.
Auer
H
,
Mayr
B
,
Lambrou
M
,
Schleger
W
.
An extended chicken karyotype, including the NOR chromosome
.
Cytogenet Cell Genet
.
1987
;
45
(
3-4
):
218
21
.
4.
Azzalin
CM
,
Nergadze
SG
,
Giulotto
E
.
Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin
.
Chromosoma
.
2001
;
110
(
2
):
75
82
.
5.
Badenhorst
D
,
Stanyon
R
,
Engstrom
T
,
Valenzuela
N
.
A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae
.
Chromosome Res
.
2013
;
21
(
2
):
137
47
.
6.
Badenhorst
D
,
Hillier
LW
,
Literman
R
,
Montiel
EE
,
Radhakrishnan
S
,
Shen
Y
, et al.
Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation
.
Genome Biol Evol
.
2015
;
7
(
7
):
2038
50
.
7.
Bickham
JW
,
Carr
JL
.
Taxonomy and phylogeny of the higher categories of cryptodiran turtles based on a cladistic analysis of chromosomal data
.
Copeia
.
1983
;
1983
(
4
):
918
32.
8.
Bickham
JW
,
Rogers
DS
.
Structure and variation of the nucleolus organizer region in turtles
.
Genetica
.
1985
;
67
(
3
):
171
.
9.
Bickham
JW
,
Bjorndal
KA
,
Haiduk
MW
,
Rainey
WE
.
The karyotype and chromosomal banding patterns of the green turtle (Chelonia mydas)
.
Copeia
.
1980
;
1980
(
3
):
540
3
.
10.
Boissinot
S
,
Bourgeois
Y
,
Manthey
JD
,
Ruggiero
RP
.
The Mobilome of Reptiles: Evolution, Structure, and Function
.
Cytogenet Genome Res
.
2019
;
157
:
21–33.
11.
Bolzán
AD
.
Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution
.
Mutat Res
.
2017
;
773
:
51
65
.
12.
Burt
DW
.
Origin and evolution of avian microchromosomes
.
Cytogenet Genome Res
.
2002
;
96
(
1-4
):
97
112
.
13.
Carbone
L
,
Nergadze
SG
,
Magnani
E
,
Misceo
D
,
Francesca Cardone
M
,
Roberto
R
, et al.
Evolutionary movement of centromeres in horse, donkey, and zebra
.
Genomics
.
2006
;
87
(
6
):
777
82
.
14.
Cavalcante MG, Bastos CEMC, Nagamachi CY, Pieczarka JC, Vicari MR, Noronha RCR. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae).
PloS One
. 2018;13(5):e0197536.
15.
Cavalcante MG, Souza LF, Vicari MR, de Bastos CEM, de Sousa JV, Nagamachi CY, et al. Molecular cytogenetics characterization of Rhinoclemmys punctularia (Testudines, Geoemydidae) and description of a Gypsy-H3 association in its genome.
Gene
. 2020a;738:144477.
16.
Cavalcante MG , Nagamachi CY , Pieczarka JC , Noronha RCR . Evolutionary insights in Amazonian turtles (Testudines, Podocnemididae): co-location of 5S rDNA and U2 snRNA and wide distribution of Tc1/Mariner . Biol Open . 2020b ; 9 ( 4 ): 4 . .
17.
Charlesworth
B
,
Sniegowski
P
,
Stephan
W
.
The evolutionary dynamics of repetitive DNA in eukaryotes
.
Nature
.
1994
;
371
(
6494
):
215
20
.
18.
Clemente
L
,
Mazzoleni
S
,
Pensabene Bellavia
E
,
Augstenová
B
,
Auer
M
,
Praschag
P
, et al.
Interstitial telomeric repeats are rare in turtles
.
Genes
.
2020
;
11
(
6
):
657
.
19.
Coyne
JA
,
Meyers
W
,
Crittenden
AP
,
Sniegowski
P
.
The fertility effects of pericentric inversions in Drosophila melanogaster
.
Genetics
.
1993
;
134
(
2
):
487
96
.
20.
Deakin
JE
,
Ezaz
T
.
Understanding the Evolution of Reptile Chromosomes through Applications of Combined Cytogenetics and Genomics Approaches
.
Cytogenet Genome Res
.
2019
;
157
(
1-2
):
7
20
.
21.
Dyomin
AG
,
Koshel
EI
,
Kiselev
AM
,
Saifitdinova
AF
,
Galkina
SA
,
Fukagawa
T
, et al.
Chicken rRNA gene cluster structure
.
PloS One
.
2016
;
11
(
6
):
e0157464
.
22.
Faravelli
M
,
Azzalin
CM
,
Bertoni
L
,
Chernova
O
,
Attolini
C
,
Mondello
C
, et al.
Molecular organization of internal telomeric sequences in Chinese hamster chromosomes
.
Gene
.
2002
;
283
(
1-2
):
11
6
.
23.
Fukuda
T
,
Kurita
J
,
Saito
T
,
Yuasa
K
,
Kurita
M
,
Donai
K
, et al.
Efficient establishment of primary fibroblast cultures from the hawksbill sea turtle (Eretmochelys imbricata)
.
In Vitro Cell Dev Biol Anim
.
2012
;
48
(
10
):
660
5
.
24.
Fukuda
T
,
Katayama
M
,
Kinoshita
K
,
Kasugai
T
,
Okamoto
H
,
Kobayashi
K
, et al.
Primary fibroblast cultures and karyotype analysis for the olive ridley sea turtle (Lepidochelys olivacea)
.
In Vitro Cell Dev Biol Anim
.
2014
;
50
(
5
):
381
3
.
25.
Gamble
T
,
Coryell
J
,
Ezaz
T
,
Lynch
J
,
Scantlebury
DP
,
Zarkower
D
.
Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems
.
Mol Biol Evol
.
2015
;
32
(
5
):
1296
309
.
26.
Glugoski
L
,
Giuliano-Caetano
L
,
Moreira-Filho
O
,
Vicari
MR
,
Nogaroto
V
.
Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish
.
Gene
.
2018
;
650
:
49
54
. .
27.
Haiduk
MW
,
Bickham
JW
.
Chromosomal homologies and evolution of testudinoid turtles with emphasis on the systematic placement of Platysternon
.
Copeia
.
1982
;
1982
(
1
):
60
6
.
28.
Hamann
M
,
Godfrey
M
,
Seminoff
J
,
Arthur
K
,
Barata
P
,
Bjorndal
K
, et al.
Global research priorities for sea turtles: informing management and conservation in the 21st century
.
Endang Species Res
.
2010
;
11
(
3
):
245
69
.
29.
Iannucci
A
,
Svartman
M
,
Bellavita
M
,
Chelazzi
G
,
Stanyon
R
,
Ciofi
C
.
Insights into Emydid Turtle Cytogenetics: The European Pond Turtle as a Model Species
.
Cytogenet Genome Res
.
2019
;
157
(
3
):
166
71
. .
30.
Ijdo
JW
,
Wells
RA
,
Baldini
A
,
Reeders
ST
.
Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR
.
Nucleic Acids Res
.
1991
;
19
(
17
):
4780
.
31.
Lara-Ruiz
P
,
Lopez
GG
,
Santos
FR
,
Soares
LS
.
Extensive hybridization in hawksbill turtles (Eretmochelys imbricata) nesting in Brazil revealed by mtDNA analyses
.
Conserv Genet
.
2006
;
7
(
5
):
773
81
.
32.
Lee
L
,
Montiel
EE
,
Navarro-Domínguez
BM
,
Valenzuela
N
.
Chromosomal rearrangements during turtle evolution altered the synteny of genes involved in vertebrate sex determination
.
Cytogenet Genome Res
.
2019
;
157
(
1-2
):
77
88
.
33.
Lisachov
AP
,
Tishakova
KV
,
Tsepilov
YA
,
Borodin
PM
.
Male meiotic recombination in the steppe agama, Trapelus sanguinolentus (Agamidae, Iguania, Reptilia)
.
Cytogenet Genome Res
.
2019
;
157
(
1-2
):
107
14
.
34.
López
AE
,
Hernández-Fernández
J
,
Bernal-Villegas
J
.
Condiciones óptimas de cultivo de linfocitos y análisis parcial del cariotipo de la tortuga cabezona, Caretta caretta (Testudines: Cheloniidae) en Santa Marta, Caribe Colombiano
.
Rev Biol Trop
.
2008
;
56
:
1459
69
.
35.
Matsubara
K
,
Kumazawa
Y
,
Ota
H
,
Nishida
C
,
Matsuda
Y
.
Karyotype analysis of four blind snake species (Reptilia: Squamata: Scolecophidia) and karyotypic changes in Serpentes
.
Cytogenet Genome Res
.
2019
;
157
(
1-2
):
98
106
.
36.
Mazzoleni
S
,
Augstenová
B
,
Clemente
L
,
Auer
M
,
Fritz
U
,
Praschag
P
, et al.
Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: the end of a 40-year error cascade for Pangshura
.
PeerJ
.
2019
;
7
:
e6241
.
37.
Meyne
J
,
Baker
RJ
,
Hobart
HH
,
Hsu
TC
,
Ryder
OA, Ward OG, et al
.
Distribution of nontelomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes
.
Chromosoma
.
1990
;
99
:
3
10.
38.
Mezzasalma
M
,
Andreone
F
,
Glaw
F
,
Petraccioli
A
,
Odierna
G
,
Guarino
FM
.
A karyological study of three typhlopid species with some inferences on chromosome evolution in blindsnakes (Scolecophidia)
.
Zool Anz
.
2016
;
264
:
34
40
.
39.
Montefalcone
G
,
Tempesta
S
,
Rocchi
M
,
Archidiacono
N
.
Centromere repositioning
.
Genome Res
.
1999
;
9
(
12
):
1184
8
.
40.
Montiel
EE
,
Badenhorst
D
,
Lee
LS
,
Literman
R
,
Trifonov
V
,
Valenzuela
N
.
Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes
.
Cytogenet Genome Res
.
2016
;
148
(
4
):
292
304
.
41.
Nielsen
SV
,
Daza
JD
,
Pinto
BJ
,
Gamble
T
.
ZZ/ZW sex chromosomes in the endemic Puerto Rican leaf-toed gecko (Phyllodactylus wirshingi)
.
Cytogenet Genome Res
.
2019
;
157
(
1-2
):
89
97
.
42.
Noleto
RB
,
Kantek
DLZ
,
Swarça
AC
,
Dias
AL
,
Fenocchio
AS
, Cestari MM.
Karyotypic characterization of Hydromedusa tectifera (Testudines, Pleurodira) from the upper Iguaçu River in the Brazilian state of Paraná
.
Genet Mol Biol
.
2006
;
29
:
263
6
43.
Olmo
E
.
Trends in the evolution of reptilian chromosomes
.
Integr Comp Biol
.
2008
;
48
(
4
):
486
93
.
44.
Orr
HA
,
Presgraves
DC
.
Speciation by postzygotic isolation: forces, genes and molecules
.
BioEssays
.
2000
;
22
(
12
):
1085
94
.
45.
Pinkel
D
,
Straume
T
,
Gray
JW
.
Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization
.
Proc Natl Acad Sci USA
.
1986
;
83
(
9
):
2934
8
.
46.
Pokorná
M
,
Giovannotti
M
,
Kratochvíl
L
,
Kasai
F
,
Trifonov
VA
,
O'Brien
PC
, et al.
Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence
.
Chromosoma
.
2011
;
120
(
5
):
455
68
.
47.
Pritchard
PCH
.
Evolution, phylogeny and current status
. In:
Lutz
PL
,
Musick
JA
, editors.
The Biology of Sea Turtles
. Boca Raton:
CRC Press
;
1997. p
.
1
28
.
48.
Proietti
MC
,
Reisser
J
,
Marins
LF
,
Marcovaldi
MA
,
Soares
LS
, Monteiro DS, et al.
Hawksbill × loggerhead sea turtle hybrids at Bahia, Brazil: where do their offspring go?
PeerJ
.
2014
;
2
:
e255.
49.
Rees
A
,
Alfaro-Shigueto
J
,
Barata
P
,
Bjorndal
K
,
Bolten
A
,
Bourjea
J
, et al.
Are we working towards global research priorities for management and conservation of sea turtles?
Endang Species Res
.
2016
;
31
:
337
82
.
50.
Rieseberg
LH
.
Chromosomal rearrangements and speciation
.
Trends Ecol Evol (Amst)
.
2001
;
16
(
7
):
351
8
.
51.
Rodríguez
PA
,
Ortiz
ML
,
Bueno
ML
.
Agentes mitogénicos para cultivos de linfocitos en quelonios
.
Orinoquia
.
2003
;
7
:
47
9
.
52.
Rovatsos
M
,
Praschag
P
,
Fritz
U
,
Kratochvšl
L
.
Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae)
.
Sci Rep
.
2017
;
7
:
42150
.
53.
Ruiz-Herrera
A
,
Nergadze
SG
,
Santagostino
M
,
Giulotto
E
.
Telomeric repeats far from the ends: mechanisms of origin and role in evolution
.
Cytogenet Genome Res
.
2008
;
122
(
3-4
):
219
28
.
54.
Seabright
M
.
A rapid banding technique for human chromosomes
.
Lancet
.
1971
;
2
(
7731
):
971
2
.
55.
Sites
JW
,
Bickham
JW
,
Haiduk
MW
,
Iverson
JB
.
Banded karyotypes of six taxa of kinosternid turtles
.
Copeia
.
1979
;
1979
(
4
):
692
8
.
56.
Smith
PG
.
Evolution of repeated DNA sequences by unequal crossover
.
Science
.
1976
;
191
(
4227
):
528
35
.
57.
Srikulnath
K
,
Azad
B
,
Singchat
W
,
Ezaz
T
.
Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania
.
PloS One
.
2019
;
14
(
2
):
e0212683
. .
58.
Valenzuela
N
,
Adams
DC
.
Chromosome number and sex determination coevolve in turtles
.
Evolution
.
2011
;
65
(
6
):
1808
13
.
59.
Valenzuela
N
,
Badenhorst
D
,
Montiel
EE
,
Literman
R
.
Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta
.
Cytogenet Genome Res
.
2014
;
144
(
1
):
39
46
.
60.
Ventura
K
,
Moreira
CN
,
Moretti
R
,
Yonenaga-Yassuda
Y
,
Rodrigues
MT
.
The lowest diploid number in Testudines: Banding patterns, telomeric and 45S rDNA FISH in Peltocephalus dumerilianus, 2n = 26 and FN = 52 (Pleurodira, Podocnemididae)
.
Genet Mol Biol
.
2014
;
37
(
1
):
61
3
.
61.
Wallace
BP
,
DiMatteo
AD
,
Bolten
AB
,
Chaloupka
MY
,
Hutchinson
BJ
,
Abreu-Grobois
FA
, et al.
Global conservation priorities for marine turtles
.
PloS One
.
2011
;
6
(
9
):
e24510
.
62.
Young
MJ
,
O'Meally
D
,
Sarre
SD
,
Georges
A
,
Ezaz
T
.
Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae)
.
Chromosome Res
.
2013
;
21
(
4
):
361
74
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.