Classical cytogenetics and mapping of 18S-28S rDNA and (TTAGGG)n sequences by fluorescence in situ hybridization (FISH) was performed on Graphiurus platyops (GPL) and Graphiurus ocularis (GOC) metaphases with the aim to characterize the genomes. In both species, inverted DAPI karyotypes showed the same diploid number, 2n = 46, and hybridization of the (TTAGGG)n probe revealed interstitial telomeric sequences (ITSs) at the centromeres of almost all bi-armed chromosomes. FISH with the rDNA probe localized nucleolus organizer regions (NORs), at the terminal ends of the p arms of the subtelocentric pairs 16 and 17 in both species and detected additional signals on GPL8 and GOC18, 19, and 22. The species have similar karyotypes, but their chromosome pairs 18-22 differ in morphology; these are acrocentric in G. platyops, as also confirmed by C-banding, and subtelocentric in G. ocularis. These differences in pairs 18-22 were also highlighted by hybridization of the telomeric probe (TTAGGG)n, which showed the small p arms in G. ocularis enriched with ITSs. FISH of rDNA probes detected multiple NOR loci in G. ocularis, underlining the intense evolutionary dynamics related to these genes. Although the Graphiurus species analyzed have similar karyotypes, the results on the repetitive sequences indicate a complex pattern of genomic reorganization and evolution occurring in these phylogenetically close species.

Baicharoen S, Hirai Y, Srikulnath K, Kongprom U, Hirai H: Hypervariability of nucleolus organizer regions in Bengal slow lorises, Nycticebus bengalensis (Primates, Lorisidae). Cytogenet Genome Res 149:267-273 (2016).
Bentz S, Montgelard C: Systematic position of the African dormouse Graphiurus (Rodentia, Gliridae) assessed from cytochrome b and 12S rRNA mitochondrial genes. J Mamm Evol 6:67-83 (1999).
Bulatova N, Lavrenchenko L, Orlov V, Milishnikov A: Notes on chromosomal identification of rodent species in western Ethiopia. Mammalia 66:128-132 (2002).
Burgos M, Jiménez R, de la Guardia RD: A rapid, simple and reliable combined method for G-banding mammalian and human chromosomes. Stain Technol 61:257-260 (1986).
Castiglia R, Garagna S, Merico V, Oguge N, Corti M: Cytogenetics of a new cytotype of African Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G-banding and distribution of (TTAGGG)n telomeric sequences. Chromosome Res 14:587-594 (2006).
Chitaukali WN, Burda H, Kock D: On small mammals of the Nyika Plateau, Malawi, in Denys C, Granjon L, Poulet A (eds): African Small Mammals, pp 415-426 (IRD, Paris 2001).
Colomina V, Catalan J, Britton-Davidian J, Veyrunes F: Extensive amplification of telomeric repeats in the karyotypically highly diverse African pygmy mice. Cytogenet Genome Res 152:55-64 (2017).
Corti M, Castiglia R, Colangelo P, Capanna E, Beolchini F, et al: Cytotaxonomy of rodent species from Ethiopia, Kenya, Tanzania and Zambia. Belg J Zool 135 Suppl:197-216 (2005).
Daams R, De Bruijn H: A classification of the Gliridae (Rodentia) on the basis of dental morphology. Hystrix It J Mamm 6:3-50 (1995).
Dobigny G, Nomao A, Gautun JC: A cytotaxonomic survey of rodents from Niger: implications for systematics, biodiversity and biogeography. Mammalia 66:495-523 (2002).
Dumas F, Mazzoleni S: Neotropical primate evolution and phylogenetic reconstruction using chromosomal data. Eur Zool J 84:1-18 (2017).
Dumas F, Cuttaia H, Sineo L: Chromosomal distribution of interstitial telomeric sequences in nine neotropical primates (Platyrrhini): possible implications in evolution and phylogeny. J Zool Syst Evol Res 54:226-236 (2016).
Gerbault-Seureau M, Cacheux L, Dutrillaux B: The relationship between the (in-)stability of NORs and their chromosomal location: the example of Cercopithecidae and a short review of other primates. Cytogenet Genome Res 153:138-146 (2018).
Gornung E, Bizzoco D, Colangelo P, Castiglia R: Comparative cytogenetic and genetic study of two Italian populations of the garden dormouse Eliomys quercinus L. (Sciuromorpha: Gliridae). Ital J Zool 77:137-143 (2010).
Gornung E, Castiglia R, Rovatsos M, Marchal JA, Díaz De La Guardia-Quiles R, Sanchez A: Comparative cytogenetic study of two sister species of Iberian ground voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus (Rodentia, Cricetidae). Cytogenet Genome Res 132:144-150 (2011a).
Gornung E, Bezerra AMR, Castiglia R: Comparative chromosome mapping of the rRNA genes and telomeric repeats in three Italian pine voles of the Microtus savii s.l. complex (Rodentia, Cricetidae). Comp Cytogenet 5:247-257 (2011b).
Graphodatsky AS, Yang F, Dobigny G, Romanenko SA, Biltueva LS, et al: Tracking genome organization in rodents by Zoo-FISH. Chromosome Res 16:261-274 (2008).
Hartenberger J: The evolution of the Gliroidea. Nat Sci Mus Monogr 8:19-33 (1994).
Holden ME: Family Gliridae, in Wilson DE, Reeder DA (eds): Mammal Species of the World: A Taxonomic and Geographic Reference, vol 2, pp 819-841 (2005).
Holden ME, Levine RS: Systematic revision of sub-Saharan African dormice (Rodentia: Gliridae: Graphiurus). Part II: Description of a new species of Graphiurus from the central Congo basin, including morphological and ecological niche comparisons with G. crassicaudatus and G. lorraineus. Bull Am Mus Nat Hist 331:314-355 (2009).
Krystufek B, Haberl W, Baxter RM, Zima J: Morphology and karyology of two populations of the woodland dormouse Graphiurus murinus in the Eastern Cape, South Africa. Folia Zool 53:339-350 (2004).
Lyapunova EA, Bakloushinskaya IY, Saidov AS, Saidov KK: Dynamics of chromosome variation in mole voles Ellobius tancrei (Mammalia, Rodentia) in Pamiro-Alay in the period from 1982 to 2008. Russ J Genet 46:566-571 (2010).
Mazzoleni S, Schillaci O, Sineo L, Dumas F: Distribution of interstitial telomeric sequences in primates and the pygmy tree shrew (Scandentia). Cytogenet Genome Res 151:141-150 (2017).
Mazzoleni S, Rovatsos M, Schillaci O, Dumas F: Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp Cytogenet 12:27-40 (2018).
Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, et al: Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3-10 (1990).
Montgelard C, Matthee CA, Robinson TJ: Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa. Proc Biol Sci 270:1947-1955 (2003).
Paço A, Chaves R, Vieira-da-Silva A, Adega F: The involvement of repetitive sequences in the remodelling of karyotypes: the Phodopus genomes (Rodentia, Cricetidae). Micron 46:27-34 (2013).
Picone B, Dumas F, Stanyon R, Lannino A, Bigoni F, et al: Exploring evolution in Ceboidea (Platyrrhini, Primates) by Williams-Beuren probe (HSA 7q11.23) chromosome mapping. Folia Primatol 79:417-427 (2008).
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS: Chromosomal evolution in Rodentia. Heredity 108:4-16 (2012).
Romanenko SA, Serdyukova NA, Perelman PL, Pavlova SV, Bulatova NS, et al: Intrachromosomal rearrangements in rodents from the perspective of comparative region-specific painting. Genes 8:E215 (2017).
Rovatsos MT, Marchal JA, Romero-Fernández I, Fernández FJ, Giagia-Athanosopoulou EB, Sánchez A: Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res 19:869-882 (2011).
Rovatsos MT, Marchal JA, Romero-Fernández I, Arroyo M, Athanasopoulou EB, Sánchez A: Extensive sex chromosome polymorphism of Microtus thomasi/Microtus atticus species complex associated with cryptic chromosomal rearrangements and independent accumulation of heterochromatin. Cytogenet Genome Res 151:198-207 (2017).
Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E: Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219-228 (2008).
Sannier J, Gerbault-Seureau M, Dutrillaux B, Richard FA: Conserved although very different karyotypes in Gliridae and Sciuridae and their contribution to chromosomal signatures in Glires. Cytogenet Genome Res 134:51-63 (2011).
Sineo L, Dumas F, Vitturi R, Picone B, Privitera O, Stanyon R: Williams-Beuren mapping in Callithrix argentata, Callicebus cupreus and Alouatta caraya indicates different patterns of chromosomal rearrangements in neotropical primates. J Zool Syst Evol Res 45:366-371 (2007).
Srikulnath K: FISH as a chromosome identification strategy to delineate karyotypic evolution in vertebrates. Thai J Genet 3:120-136 (2010).
Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306 (1972).
Tranier M, Dosso H: Researches caryotypiques sur les rongeurs de Cote d'Ivoire: résultats préliminares pour les milieux fermés. Mammalia 43:254-256 (1979).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.