Ctenoluciidae is a Neotropical freshwater fish family whose representatives are known as bicudas. The genus Boulengerella contains 5 species, and 4 of them (B. cuvieri, B. lateristriga, B. lucius, and B. maculata) were cytogenetically analyzed in the present study by conventional and molecular procedures. All 4 species have a very similar karyotype, with 2n = 36 chromosomes (14 metacentrics + 16 submetacentrics + 6 subtelocentrics; FN = 72). However, the heterochromatin distribution pattern is species-specific. In all 4 species, the nucleolus organizer region is located in pair 18, as also confirmed by cytogenetic mapping of 18S rDNA. In turn, 5S rRNA genes are present in 2 chromosome pairs: in pair 1 of all 4 species, and in pair 10 of B. lateristriga, B. maculata, and B. cuvieri, but in pair 4 of B. lucius. The telomeric probe highlighted terminal regions in all chromosomes, as well as an interstitial centromeric sequence in pair 3 of the 3 first-mentioned species. Notably, a conspicuous heteromorphic secondary constriction in chromosomes 18 was found only in the males of the 3 species, rendering one of the homologs much larger than the other one. This feature, associated with a large 18S rDNA block and accumulation of telomeric sequences, suggests the presence of an XX/XY sex chromosome system in the analyzed Boulengerella species.

1.
Abramyan J, Ezaz T, Graves JAM, Koopman P: Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res 17:1015-1024 (2009).
2.
Arai R: Fish Karyotypes: A Check List (Springer Science & Business Media, Berlin 2011).
3.
Arefjev VA: Karyotypic diversity of characid families (Pisces, Characidae). Caryologia 43:291-304 (1990).
4.
Azzalin CM, Nergadze SG, Giulotto E: Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 110:75-82 (2001).
5.
Bertollo LAC: Chromosome evolution in the Neotropical Erythrinidae fish family: an overview, in Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds): Fish Cytogenetics, pp 195-211 (Oxford and IBH Publishing Co., New Delhi 2007).
6.
Bertollo LAC, Fontes MS, Fenocchio AS, Cano J: The X1X2Y sex chromosome system in the fish Hoplias malabaricus. I. G-, C- and chromosome replication banding. Chromosome Res 5:493-499 (1997).
7.
Blackburn EH: Telomeres: no end in sight. Cell 77:621-623 (1994).
8.
Buckup PA: Relationships of the Characidiinae and phylogeny of characiform fishes (Teleostei: Ostariophysi), in Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (eds): Phylogeny and Classification of Neotropical Fishes, pp 123-144 (Edipucrs, Porto Alegre 1998).
9.
Carel JC, Mathivon L, Gendrel C, Ducret JP, Chaussain JL: Near normalization of final height with adapted doses of growth hormone in Turner's syndrome. J Clin Endocrinol Metab 83:1462-1466 (1998).
10.
Carvalho ML, Oliveira C, Foresti F: Nuclear DNA content of thirty species of neotropical fishes. Genet Mol Biol 21:47-54 (1998).
11.
Cioffi MB, Bertollo LAC: Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity 105:554-561 (2010).
12.
Cioffi MB, Martins C, Bertollo LAC: Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet 10:34 (2009).
13.
Cioffi MB, Martins C, Bertollo LA: Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:271 (2010).
14.
Cioffi MB, Camacho JPM, Bertollo LAC: Repetitive DNAs and differentiation of sex chromosomes in neotropical fishes. Cytogenet Genome Res 132:188-194 (2011).
15.
Cioffi MB, Molina WF, Artoni RF, Bertollo LAC: Chromosomes as tools for discovering biodiversity. The case of Erythrinidae fish family, in Tirunilai P (ed): Recent Trends in Cytogenetic Studies - Methodologies and Applications, pp 125-146 (InTech, Rijeka 2012).
16.
de Barros AV, Sczepanski TS, Cabrero J, Camacho JPM, Vicari MR, Artoni RF: Fiber FISH reveals different patterns of high-resolution physical mapping for repetitive DNA in fish. Aquaculture 322-323:47-50 (2011).
17.
Dergam JA, Bertollo LAC: Karyotypic diversification in Hoplias malabaricus (Osteichthyes, Erythrinidae) of the São Francisco and Alto Paraná basins, Brazil. Braz J Genet 13:755-766 (1990).
18.
Ferreira IA, Bertollo LAC, Martins C: Comparative chromosome mapping of 5S rDNA and 5SHin dIII repetitive sequences in Erythrinidae fishes (Characiformes) with emphasis on the Hoplias malabaricus “species complex”. Cytogenet Genome Res 118:78-83 (2007).
19.
Ferreira M, Garcia C, Matoso DA, de Jesus IS, Feldberg E: A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica 144:591-599 (2016).
20.
Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, et al: Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55:505-512 (1994).
21.
Gold JR, Li C, Shipley NS, Powers PK: Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol 37:563-575 (1990).
22.
Gornung E, Mannarelli ME, Rossi AR, Sola L: Chromosomal evolution in Mugilidae (Pisces, Mugiliformes): FISH mapping of the (TTAGGG)n telomeric repeat in the six Mediterranean mullets. Hereditas 140:158-159 (2004).
23.
Gottschling DE, Aparicio OM, Billington BL, Zakian VA: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751-762 (1990).
24.
Gross MC, Schneider CH, Valente GT, Martins C, Feldberg E: Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. J Fish Biol 76:1117-1127 (2010).
25.
Guillén AKZ, Hirai Y, Tanoue T, Hirai H: Transcriptional repression mechanisms of nucleolus organizer regions (NORs) in humans and chimpanzees. Chromosome Res 12:225-237 (2004).
26.
Hamilton MJ, Hong GH, Wichman A: Intragenomic movement and concerted evolution of satellite DNA in Peromyscus: evidence from in situ hybridization. Cytogenet Cell Genet 60:40-44 (1992).
27.
Howell WM, Black DA: Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 3:1014-1015 (1980).
28.
Ijdo JW, Wells RA, Baldini A, Reeders ST: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780 (1991).
29.
Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y: Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117:92-102 (2007).
30.
Liu WS, Fredga K: Telomeric (TTAGGG)n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming. Chromosome Res 7:235-240 (1999).
31.
Lucena CAS: Estudo filogenético da família Characidae com uma discussão dos grupos naturais propostos (Teleostei, Ostariophysi, Characiformes). PhD thesis, Universidade de São Paulo, São Paulo (1993).
32.
Martinez JF, Lui RL, Traldi JB, Blanco DR, Moreira-Filho O: Comparative cytogenetics of Hoplerythrinus unitaeniatus (Agassiz, 1829) (Characiformes, Erythrinidae): species complex from different Brazilian hydrographic basins. Cytogenet Genome Res 149:191-200 (2016).
33.
Martins C, Galetti PM: Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res 7:363-367 (1999).
34.
Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM Jr: A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127:133-141 (2006).
35.
Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, et al: Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3-10 (1990).
36.
Nergadze S, Santagostino M, Salzano A, Mondello C, Giulotto E: Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol 8:R260 (2007).
37.
Ocalewicz K: Telomeres in fishes. Cytogenet Genome Res 141:114-125 (2013).
38.
Ocalewicz K, Śliwińska A, Jankun M: Autosomal localization of interstitial telomeric sites (ITS) in brook trout, Salvelinus fontinalis (Pisces, Salmonidae). Cytogenet Genome Res 105:79-82 (2004).
39.
Oliveira C, Almeida-Toledo LF, Foresti F, Toledo-Filho SA: Supernumerary chromosomes, Robertsonian rearrangement and multiple NORs in Corydoras aeneus (Pisces, Siluriformes, Callichthyidae). Caryologia 41:227-236 (1988a).
40.
Oliveira C, Almeida-Toledo LF, Foresti F, Britski HA, Toledo Filho SA: Chromosome formulae of Neotropical freshwater fishes. Rev Brasil Genét 11:577-624 (1988b).
41.
Oliveira C, Andreata AA, Almeida-Toledo LF, Toledo-Filho SA: Karyotype and nucleolus organizer regions of Pyrrhulina cf. australis (Pisces, Characiformes, Lebiasinidae). Rev Brasil Genét 14:685-690 (1991).
42.
Oliveira C, Almeida-Toledo LF, Foresti F: Karyotypic evolution in Neotropical fishes, in Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds): Fish Cytogenetics, pp 111-164 (CRC Press, Boca Raton 2007).
43.
Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, et al: Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol 11:275-285 (2011).
44.
Oliveira MLM, Utsunomia R, Pansonato-Alves JC, Scacchetti PC, Primo CC, et al: Microstructural chromosome reorganization in the genus Trichomycterus (Siluriformes: Trichomycteridae). Neotrop Ichthyol 14:e150084 (2016).
45.
Oyakawa OT: Relações filogenéticas das famílias Pyrrhulinidae, Lebiasinidae e Erythrinidae (Osteichthyes: Characiformes). Tese de doutorado, Universidade de São Paulo, São Paulo (1998).
46.
Pich U, Fuchs J, Schubert I: How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4:207-213 (1996).
47.
Pinkel D, Straume T, Gray JW: Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934-2938 (1986).
48.
Pomianowski L, Jankun M, Ocalewicz K: Detection of interstitial telomeric sequences in the Arctic charr (Salvelinus alpinus) (Teleostei, Salmonidae). Genome 55:26-32 (2012).
49.
Pucci MB, Barbosa P, Nogaroto V, Almeida MC, Artoni RF, et al: Population differentiation and speciation in the genus Characidium (Characiformes: Crenuchidae): effects of reproductive and chromosomal barriers. Biol J Linn Soc 111:541-553 (2014).
50.
Queiroz LJ, Torrente-Vilara G, Barros BSF, Vari RP: Ctenoluciidae; in Queiroz LJO, Ohara W, Zuanon J, Pires T, Torrente-Vilara G, Dória C (eds): Peixes do Rio Madeira, pp 91-95 (Santo Antonio Energia, São Paulo 2014).
51.
Reed K, Phillips RB: Molecular cytogenetic analysis of the double-CMA3 chromosome of lake trout, Salvelinus namaycush. Cytogenet Cell Genet 70:104-107 (1995).
52.
Rosa R, Rubert M, Martins-Santos IC, Giuliano-Caetano L: Evolutionary trends in Hoplerythrinus unitaeniatus (Agassiz 1829) (Characiformes, Erythrinidae). Rev Fish Biol Fisheries 22:467-475 (2012).
53.
Rossi AR, Gornung E, Sola L, Nirchio M: Comparative molecular cytogenetic analysis of two congeneric species, Mugil curema and M. liza (Pisces, Mugiliformes), characterized by significant karyotype diversity. Genetica 125:27-32 (2005).
54.
Sambrook J, Russell DW: Molecular Cloning. A Laboratory Manual, ed 3 (Cold Spring Harbor Laboratory Press, New York 2001).
55.
Santos GM, Jégu M, Merona B: Catálogo de peixes comerciais do baixo rio Tocantins, in Projeto Tucuruí Eletronorte/CNPq/INPA, pp 86 (Manaus 1984).
56.
Scacchetti PC, Utsunomia R, Pansonato-Alves JC, da Costa Silva GJ, Vicari MR, et al: Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei: Characiformes). PLoS One 10:e0137231 (2015).
57.
Scheel JJ: Fish chromosomes and their evolution. Internal Report of Danmarks Akvarium, Charlottenlund, Denmark (1973).
58.
Sola L, Rossi AR, Laselli V, Rasch EM, Monaco PJ: Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet Cell Genet 60:229-235 (1992).
59.
Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306 (1972).
60.
Vari RP: The Neotropical fish family Ctenoluciidae (Teleostei: Ostariophysi: Characiformes): supra and intrafamilial phylogenetic relationships, with a revisionary study. Smithsonian Contributions to Zoology 564:1-97 (1995).
61.
Vari RP: Family Ctenoluciidae, in Reis RE, Kullander SO, Ferraris CJ Jr (eds): Check List of the Freshwater Fishes of South and Central America, pp 252-253 (Edipucrs, Porto Alegre 2003).
62.
Viana PF, Ribeiro LB, Souza GM, Chalkidis HM, Gross MC, Feldberg E: Is the karyotype of Neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family. PLoS One 11:e0160274 (2016).
63.
Wichman HA, Payne CT, Ryder OA, Hamilton MJ, Maltbie M, Baker RJ: Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Hered 82:369-377 (1991).
64.
Wiley JE, Meyne J, Little ML, Stout JC: Interstitial hybridization sites of the (TTAGGG)n telomeric sequence on the chromosomes of some North American hylid frogs. Cytogenet Cell Genet 61:55-57 (1992).
65.
Yano CF, Bertollo LAC, Liehr T, Troy WP, Cioffi MB: W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): an ongoing process narrated by repetitive sequences. J Hered 107:342-348 (2016).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.