Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes.

1.
Abramyan J, Ezaz T, Graves JA, Koopman P: Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Res 17:1015-1024 (2009).
2.
Ahituv N, Prabhakar S, Rubin EM, Couronne O: Mapping cis-regulatory domains in the human genome using multi-species conservation of synteny. Hum Mol Genet 14:3057-3063 (2005).
3.
Alfoldi J, Di Palma F, Grabherr M, Williams C, Kong L, et al: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587-591 (2011).
4.
Ayres M, Sampaio MM, Barros RM, Dias LB, Cuhna OR: Karyological study of turtles from the Brazilian Amazon region. Cytogenetics 8: 401-409 (1969).
5.
Azzalin CM, Nergadze SG, Giulotto E: Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 110:75-82 (2001).
6.
Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, et al: Are all sex chromosomes created equal? Trends Genet 27:350-357 (2011).
7.
Badenhorst D, Stanyon R, Engstrom T, Valenzuela N: A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res 21:137-147 (2013).
8.
Badenhorst D, Hillier LW, Literman R, Montiel EE, Radhakrishnan S, et al: Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol Evol 7:2038-2050 (2015).
9.
Bickham JW: A cytosystematic study of turtles in the genera Clemmys, Mauremys and Sacalia. Herpetologica 31:198-204 (1975).
10.
Bickham JW: 200,000,000-year-old chromosomes - deceleration of the rate of karyotypic evolution in turtles. Science 212:1291-1293 (1981).
11.
Bickham JW, Baker RJ: Karyotypes of some neotropical turtles. Copeia 1976:702-708 (1976).
12.
Bickham JW, Rogers DS: Structure and variation of the nucleolus organizer region in turtles. Genetica 67:171-184 (1985).
13.
Bickham JW, Bull JJ, Legler JM: Karyotypes and evolutionary relationships of trionychoid turtles. Cytologia 48:177-183 (1983).
14.
Bolzan AD, Bianchi MS: Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 612:189-214 (2006).
15.
Born GG, Bertollo LA: An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing X chromosome. Chromosome Res 8:111-118 (2000).
16.
Brelsford A, Stoeck M, Betto-Colliard C, Dubey S, Dufresnes C, et al: Homologous sex chromosomes in three deeply divergent anuran species. Evolution 67:2434-2440 (2013).
17.
Brown JD, O'Neill RJ: Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 11:291-316 (2010).
18.
Bull JJ, Legler JM: Karyotypes of side-necked turtles (Testudines: Pleurodira). Can J Zool 58:828-841 (1980).
19.
Bull JJ, Moon RG, Legler JM: Male heterogamety in kinosternid turtles (genus Staurotypus). Cytogenet Cell Genet 13:419-425 (1974).
20.
Carr JL, Bickham JW: Sex-chromosomes of the Asian black pond turtle, Siebenrockiella crassicollis (Testudines, Emydidae). Cytogenet Cell Genet 31:178-183 (1981).
21.
Castiglia R, Makundi R, Corti M: The origin of an unusual sex chromosome constitution in Acomys sp (Rodentia, Muridae) from Tanzania. Genetica 131:201-207 (2007).
22.
Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, et al: The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci USA 110:20645-20650 (2013).
23.
Cleiton F, Giuliano-Caetano L: Cytogenetic characterization of two turtle species: Trachemys dorbigni and Trachemys scripta elegans. Caryologia 61:253-257 (2008).
24.
Cribiu EP, Di Berardino D, Di Meo GP, Eggen A, Gallagher DS, et al: International System for Chromosome Nomenclature of Domestic Bovids (ISCNDB 2000). Cytogenet Cell Genet 92:283-299 (2001).
25.
de Lange T: Protection of mammalian telomeres. Oncogene 21:532-540 (2002).
26.
de Oliveira Barbosa M, da Silva RR, de Sena Correia VC, Dos Santos LP, Garnero Adel V, Gunski RJ: Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): evidence of a chromosome inversion. Genet Mol Biol 36:70-73 (2013).
27.
De Smet WH: Chromosomes of 11 species of Chelonia (Reptilia). Acta Zool Path Antv 70:15-34 (1978).
28.
de Wit E, van Steensel B: Chromatin domains in higher eukaryotes: insights from genome-wide mapping studies. Chromosoma 118:25-36 (2009).
29.
Ezaz T, Valenzuela N, Grutzner F, Miura I, Georges A, et al: An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines: Chelidae) with genetic sex determination. Chromosome Res 14:139-150 (2006).
30.
Ezaz T, Moritz B, Waters P, Graves JA, Georges A, Sarre SD: The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Res 17:965-973 (2009).
31.
Fantin C, dos Santos Monjelo LA: Cytogenetic studies in Podocnemis expansa and Podocnemis sextuberculata (Testudines, Podocnemididae), turtles of the Brazilian Amazon. Caryologia 64:154-157 (2011).
32.
Farley KI, Surovtseva Y, Merkel J, Baserga SJ: Determinants of mammalian nucleolar architecture. Chromosoma 124:323-331 (2015).
33.
Finato AO, Varella-Garcia M, Tajara EH, Taddei VA, Morielle-Versute E: Intrachromosomal distribution of telomeric repeats in Eumops glaucinus and Euntops perotis (Molossidae, Chiroptera). Chromosome Res 8:563-569 (2000).
34.
Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, et al: Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55:505-512 (1994).
35.
Fukagawa T, Earnshaw WC: Neocentromeres. Curr Biol 24:R946-R947 (2014).
36.
Gamble T, Geneva AJ, Glor RE, Zarkower D: Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68:1027-1041 (2014).
37.
Garavis M, Gonzalez C, Villasante A: On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution. Genome Biol Evol 5:1142-1150 (2013).
38.
Gomes NM, Shay JW, Wright WE: Telomere biology in Metazoa. FEBS Lett 584:3741-3751 (2010).
39.
Goodpasture C, Bloom SE: Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37-50 (1975).
40.
Gornung E: Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res 141:90-102 (2013).
41.
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, et al: Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449 (2014).
42.
Gunski RJ, Cunha IS, Degrandi TM, Ledesma M, Garnero ADV: Cytogenetic comparison of Podocnemis expansa and Podocnemis unifilis: a case of inversion and duplication involving constitutive heterochromatin. Genet Mol Biol 36:353-356 (2013).
43.
Haiduk MW, Bickham JW: Chromosomal homologies and evolution of Testudinoid turtles with emphasis on the systematic placement of Platysternon. Copeia 1982:60-66 (1982).
44.
Howell WM: Visualization of ribosomal gene activity - silver stains proteins associated with ribosomal-RNA transcribed from oocyte chromosomes. Chromosoma 62:361-367 (1977).
45.
Hsu TC, Spirito SE, Pardue ML: Distribution of 18 + 28S ribosomal genes in mammalian genomes. Chromosoma 53:25-36 (1975).
46.
Huang CC, Clark HF: Chromosome studies of cultured cells of 2 species of side-necked turtles (Podocnemis unifilis and P. expansa). Chromosoma 26:245-253 (1969).
47.
Ijdo JW, Wells RA, Baldini A, Reeders ST: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780-4780 (1991).
48.
Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, et al: Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088-1091 (2008).
49.
Janes DE, Organ CL, Valenzuela N: New resources inform study of genome size, content and organization in non-avian reptiles. Integr Comp Biol 48:447-453 (2008).
50.
Janes DE, Organ CL, Stiglec R, O'Meally D, Sarre SD, et al: Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia. Biol Lett 10:20140809-20140809 (2014).
51.
Janzen FJ, Krenz JG: Phylogenetics: which was first, TSD or GSD?, in Valenzuela N, Lance VA (eds): Temperature-Dependent Sex Determination in Vertebrates, pp 121-130 (Smithsonian Books, Washington, DC. 2004).
52.
Kasai F, O'Brien PCM, Martin S, Ferguson-Smith MA: Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet Genome Res 136:303-307 (2012).
53.
Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C: The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet Genome Res 125:125-131 (2009).
54.
Kawagoshi T, Nishida C, Matsuda Y: The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines). Chromosome Res 20:95-110 (2012).
55.
Kawagoshi T, Uno Y, Nishida C, Matsuda Y: The Staurotypus turtles and Aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination. PLoS One 9:e105315 (2014).
56.
Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y: Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117:92-102 (2007).
57.
Kawai A, Ishijima J, Nishida C, Kosaka A, Ota H, et al: The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma 118:43-51 (2009).
58.
Killebrew FC: Mitotic chromosomes of turtles. Part 1: the Pelomedusidae. J Herpetol 9:281-285 (1975a).
59.
Killebrew FC: Mitotic chromosomes of turtles. Part 3: the Kinosternidae. Herpetologica 31:398-403 (1975b).
60.
Killebrew FC: Mitotic chromosomes of turtles. II. Chelidae. Tex J Sci 27:149-154 (1976).
61.
Killebrew FC: Mitotic chromosomes of turtles. IV. Emydidae. Tex J Sci 29:245-253 (1977).
62.
King M, Contreras N, Honeycutt RL: Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18s+28s in situ hybridization. Genetica 80:17-29 (1990).
63.
Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S: The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126:1-16 (1997).
64.
Literman R, Badenhorst D, Valenzuela N: qPCR-based molecular sexing by copy number variation in rRNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol Evol 5:872-880 (2014).
65.
Martinez P, Valenzuela N, Georges A, Graves JA: An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii, a new piece in the puzzle of sex chromosome evolution in turtles. Chromosome Res 16:815-825 (2008).
66.
Martinez PA, Boeris JM, Sanchez J, Pastori MC, Bolzan AD, Ledesma MA: Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of Cryptodiran turtles from Argentina. Genetica 137:277-283 (2009).
67.
Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, et al: Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res 13:601-615 (2005).
68.
McBee K, Bickham JW, Rhodin AG, Mittermeier RA: Karyotypic variation in the genus Platemys (Testudines, Pleurodira). Copeia 1985:445-449 (1985).
69.
Mendez-Lago M, Wild J, Whitehead SL, Tracey A, de Pablos B, et al: Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere. Nucleic Acids Res 37:2264-2273 (2009).
70.
Monti V, Manicardi GC, Mandrioli M: Cytogenetic and molecular analysis of the holocentric chromosomes of the potato aphid Macrosiphum euphorbiae (Thomas, 1878). Comp Cytogen 5:163-172 (2011).
71.
Montiel EE, Manrique-Poyato MI, Rocha-Sanchez SM, Lopez-Leon MD, Cabrero J, Perfectti F, Camacho JP: Nucleolus size varies with sex, ploidy and gene dosage in insects. Physiol Entomol 37:145-152 (2012).
72.
Montiel EE, Badenhorst D, Tamplin J, Burke R, Valenzuela N: Discovery of youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma DOI: 10.1007/s00412-016-0576-7 [Epub ahead of print] (2016).
73.
Nanda I, Schrama D, Feichtinger W, Haaf T, Schartl M, Schmid M: Distribution of telomeric (TTAGGG)(n) sequences in avian chromosomes. Chromosoma 111:215-227 (2002).
74.
Ocalewicz K: Telomeres in fishes. Cytogenet Genome Res 141:114-125 (2013).
75.
Olmo E: Rate of chromosome changes and speciation in reptiles. Genetica 125:185-203 (2005).
76.
Olmo E: Trends in the evolution of reptilian chromosomes. Integr Comp Biol 48:486-493 (2008).
77.
Olmo E, Signorino GG: ChromoRep: A Reptiles Chromosomes Database (2005). Available at http://chromorep.univpm.it/
78.
Olmo E, Capriglione T, Odierna G: Different genomic evolutionary rates in the various reptile lineages. Gene 295:317-321 (2002).
79.
O'Meally D, Ezaz T, Georges A, Sarre SD, Graves JA: Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res 20:7-19 (2012).
80.
Organ CL, Moreno RG, Edwards SV: Three tiers of genome evolution in reptiles. Integr Comp Biol 48:494-504 (2008).
81.
Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, et al: Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455-468 (2011).
82.
Popescu AA, Huber KT, Paradis E: ape 3.0: New tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 28:1536-1537 (2012).
83.
Porter CA, Haiduk MW, Dequeiroz K: Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia 2:302-313 (1994).
84.
Prieto JL, McStay B: Pseudo-NORs: a novel model for studying nucleoli. Biochim Biophys Acta 1783:2116-2123 (2008).
85.
R Core Development Team: R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna 2012). Available at http://cran.R-project.org.
86.
Rousselet J, Monti L, Auger-Rozenberg MA, Parker JS, Lemeunier F: Chromosome fission associated with growth of ribosomal DNA in Neodiprion abietis (Hymenoptera: Diprionidae). Proc Biol Sci 267:1819-1823 (2000).
87.
Rovatsos M, Altmanova M, Pokorna M, Kratochvil L: Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution 68:2079-2085 (2014).
88.
Rovatsos M, Vukic J, Kratochvil L: Mammalian X homolog acts as sex chromosome in lacertid lizards. Heredity DOI: 10.1038/hdy.2016.18. [Epub ahead of print] (2016).
89.
Ruiz-Herrera A, García F, Azzalin C, Giulotto E, Egozcue J, et al: Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution. Hum Genet 110:578-586 (2002).
90.
Ruiz-Herrera A, García F, Giulotto E, Attolini C, Egozcue J, et al: Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet Genome Res 108:234-247 (2005).
91.
Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E: Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219-228 (2008).
92.
Sato H, Ota H: Karyotype of the Chinese soft-shelled turtle, Pelodiscus sinensis, from Japan and Taiwan, with chromosomal data for Dogania subplana. Curr Herpetol 20:19-25 (2001).
93.
Schmid M, Steinlein C: Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae). Cytogenet Genome Res 145:201-217 (2015).
94.
Schmid M, Haaf T, Geile B, Sims S: Chromosome-banding in Amphibia. VIII. An unusual XY/XX-sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma 88:69-82 (1983).
95.
Schmid M, Ohta S, Steinlein C, Guttenbach M: Chromosome-banding in Amphibia.19. Primitive ZW/ZZ sex-chromosomes in Buergeria buergeri (Anura, Rhacophoridae). Cytogenet Cell Genet 62:238-246 (1993).
96.
Seabright M: A rapid banding technique for human chromosomes. Lancet 2:971-972 (1971).
97.
Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, et al: The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14:R28: 21-22 (2013).
98.
Sharma GP, Kaur P, Nakhasi U: Female heterogamety in the Indian cryptodiran chelonian, Kachuga smithi Gray, in Tiwari KK, Srivistava CB (eds): Dr BS Chuahah Commemoration Volume, pp 359-368 (Zoological Society of India, Orissa, India 1975).
99.
Shaw PJ, McKeown PC: The structure of rDNA chromatin, in Olson MOJ (ed): The Nucleolus, pp 43-55 (Springer New York, 2011).
100.
Simons A, Shaffer LG, Hastings RJ: Cytogenetic nomenclature: changes in the ISCN 2013 compared to the 2009 edition. Cytogenet Genome Res 141:1-6 (2013).
101.
Sites JW, Bickham JW, Haiduk MW: Derived X-chromosome in the turtle genus Staurotypus. Science 206:1410-1412 (1979).
102.
Steiner FA, Henikoff S: Diversity in the organization of centromeric chromatin. Curr Opin Genet Dev 31:28-35 (2015).
103.
Stock AD: Karyological relationships in turtles (Reptilia: Chelonia). Can J Genet Cytol 14: 859-868 (1972).
104.
Sumner AT: Simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306 (1972).
105.
Takehana Y, Naruse K, Asada Y, Matsuda Y, Shin-I T, et al: Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chrom Res 20:71-81 (2012).
106.
Tree of Sex Consortium: Tree of Sex: A database of sexual systems. Scientific Data 1:140015 (2014).
107.
Uno Y, Nishida C, Tarui H, Ishishita S, Takagi C, et al: Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. Plos One 7:e53027: 53021-53012 (2012).
108.
Valenzuela N: Relic thermosensitive gene expression in a turtle with genotypic sex determination. Evolution 62:234-240 (2008).
109.
Valenzuela N: Egg incubation and collection of painted turtle embryos. Cold Spring Harbor Protocols 4:1-3 (2009).
110.
Valenzuela N, Adams DC: Chromosome number and sex determination co-evolve in turtles. Evolution 65 1808-1813 (2011).
111.
Valenzuela N, Badenhorst D, Montiel Jiménez EE, Literman R: Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta. Cytogenet Genome Res 144:39-46 (2014).
112.
van Dijk PP, Iverson JB, Rhodin AG, Shaffer HB, Baur B: Turtles of the world: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. Chelonian Res Monogr 7: 329-479 (2014).
113.
Ventura K, Moreira CN, Moretti R, Yonenag-Yassuda Y, Rodrigues MT: The lowest diploid number in Testudines: banding patterns, telomeric and 45S rDNA FISH in Peltocephalus dumerilianus, 2n = 26 and FN = 52 (Pleurodira, Podocnemididae). Genet Mol Biol 37:61-63 (2014).
114.
Villasante A, Mendez-Lago M, Abad JP, de Garcini EM: The birth of the centromere. Cell Cycle 6:2872-2876 (2007).
115.
Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, et al: The King Cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA 110:20651-20656 (2013).
116.
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, et al: The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45:701-706 (2013).
117.
Wang ZS, Miyake T, Edwards SV, Amemiya CT: Tuatara (Sphenodon) genomics: BAC library construction, sequence survey, and application to the DMRT gene family. J Hered 97:541-548 (2006).
118.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, et al: The genome of a songbird. Nature 464:757-762 (2010).
119.
Wiley JE: Replication banding and FISH analysis reveal the origin of the Hyla femoralis karyotype and XY/XX sex chromosomes. Cytogenet Genome Res 101:80-83 (2003).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.