For decades, satellite DNAs have been the hidden part of genomes. Initially considered as junk DNA, there is currently an increasing appreciation of the functional significance of satellite DNA repeats and of their sequences. Satellite DNA families accumulate in the heterochromatin in different parts of the eukaryotic chromosomes, mainly in pericentromeric and subtelomeric regions, but they also span the functional centromere. Tandem repeat sequences may spread from subtelomeric to interstitial loci, leading to the formation of chromosome-specific loci or to the accumulation in equilocal sites in different chromosomes. They also appear as the main components of the heterochromatin in the sex-specific region of sex chromosomes. Satellite DNA, required for chromosome organization, also plays a role in pairing and segregation. Some satellite repeats are transcribed and can participate in the formation and maintenance of heterochromatin structure and in the modulation of gene expression. In addition to the identification of the different satellite DNA families, their characteristics and location, we are interested in determining their impact on the genomes, by identifying the mechanisms leading to their appearance and amplification as well as in understanding how they change over time, the factors affecting these changes, and the influence exerted by the evolutionary history of the organisms. On the other hand, satellite DNA sequences are rapidly evolving sequences that may cause reproductive barriers between organisms and promote speciation. The accumulation of experimental data collected in recent years and the emergence of new approaches based on next-generation sequencing and high-throughput genome analysis are opening new perspectives that are changing our understanding of satellite DNA. This review examines recent data to provide a timely update on the overall information gathered about this part of the genome, focusing on the advances in the knowledge of its origin, its evolution, and its potential functional roles.

1.
Alexandrov IA, Mitkevich SP, Yurov YB: The phylogeny of human chromosome specific alpha satellites. Chromosoma 96:443-453 (1988).
2.
Almeida C, Fonsêca A, dos Santos KG, Mosiolek M, Pedrosa-Harand A: Contrasting evolution of a satellite DNA and its ancestral IGS rDNA in Phaseolus (Fabaceae). Genome 55:683-689 (2012).
3.
Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, et al: Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 107:255-268 (2011).
4.
Anamthawat-Jónsson K, Wenke T, Thórsson AT, Sveinsson S, Zakrzewski F, Schmidt T: Evolutionary diversification of satellite DNA sequences from Leymus (Poaceae: Triticeae). Genome 52:381-390 (2009).
5.
Ananiev EV, Chamberlin MA, Klaiber J, Svitashev S: Microsatellite megatracts in the maize (Zea mays L.) genome. Genome 48:1061-1069 (2005).
6.
Banaei-Moghaddama AM, Martis MM, Macas J, Gundlach H, Himmelbach A, et al: Genes on B chromosomes: old questions revisited with new tools. Biochim Biophys Acta 1849:64-70 (2015).
7.
Bao W, Zhang W, Yang Q, Zhang Y, Han B, et al: Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Genet Genomics 275:421-430 (2006).
8.
Bedbrook JR, Jones J, O'Dell M, Thompson RD, Flavell RB: A molecular description of telomeric heterochromatin in Secale species. Cell 19:545-560 (1980).
9.
Bennett MD, Leitch IJ: Genome size evolution in plants, in Gregory TR (ed): The Evolution of the Genome, pp 89-162 (Elsevier, Burlington 2005).
10.
Blackburn E, Greider CW: Telomeres (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1995).
11.
Brenner S: Refuge of spandrels. Curr Biol 8:R669 (1998).
12.
Bůzek J, Koutníková H, Houben A, Ríha K, Janousek B, et al: Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res 5: 57-65 (1997).
13.
Cafasso D, Chinali G: An ancient satellite DNA has maintained repetitive units of the original structure in most species of the living fossil plant genus Zamia. Genome 57:125-135 (2014).
14.
Camacho JPM: B chromosomes, in Gregory TR (ed): The Evolution of the Genome, pp 223-285 (Elsevier, Burlington 2005).
15.
Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado A: Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L. Theor Appl Genet 126:949-961 (2013a).
16.
Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado A: The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Ann Bot 112:1845-1855 (2013b).
17.
Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, et al: Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16:961-976 (2008).
18.
Charlesworth B: Plant sex determination and sex chromosomes. Heredity (Edinb) 88:94-101 (2002).
19.
Čížková J, Hřibová A, Humplíková L, Christelová P, Suchánková P, Doležel J: Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS One 8:e54808 (2013).
20.
Contento A, Heslop-Harrison JS, Schwarzacher T: Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34-42 (2005).
21.
Cuadrado A, Jouve N: Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x-triticale. Chromosome Res 2:331-338 (1994).
22.
Cuadrado A, Jouve N: Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. Genome 38:795-802 (1995).
23.
Cuadrado A, Jouve N: Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J Hered 93:339-345 (2002).
24.
Cuadrado A, Jouve N: The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res 15:711-720 (2007).
25.
Cuadrado A, Carmona A, Jouve N: Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: new insight into the evolution of this complex. PLoS One 8:e81385 (2013).
26.
Cuñado N, Navajas-Pérez R, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, et al: The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosome Res 15:825-832 (2007).
27.
Dawe RK, Henikoff S: Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 31:662-669 (2006).
28.
de la Herrán R, Robles F, Cuñado N, Santos JL, Ruiz Rejón M, et al: A heterochromatic satellite DNA is highly amplified in a single chromosome of Muscari (Hyacinthaceae). Chromosoma 110:197-202 (2001).
29.
de la Herrán R, Cuñado N, Navajas-Pérez R, Santos JL, Ruiz Rejón C, Garrido-Ramos MA, Ruiz Rejón M: The controversial telomeres of lily plants. Cytogenet Genome Res 109:144-147 (2005).
30.
Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI: Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS One 9:e85118 (2014).
31.
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, et al: Genomic repeat abundances contain phylogenetic signal. Syst Biol 64:112-126 (2015).
32.
Doolittle WF: Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci USA 110:5294-5300 (2013).
33.
Dover G: Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159-165 (1986).
34.
Emadzade K, Jang TS, Macas J, Kovařík A, Novák P, et al: Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot 114:1597-1608 (2014).
35.
Fry K, Salser W: Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomysordii and characterization of similar sequences in other rodents. Cell 12:1069-1084 (1977).
36.
Fu S, Gao Z, Birchler J, Han F: Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics 39:125-130 (2012).
37.
Fulnečková J, Sěvčíková T, Fajkus J, Lukešová A, Lukeš M, et al: A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes. Genome Biol Evol 5:468-483 (2013).
38.
Gao Z, Fu S, Dong Q, Han F, Birchler JA: Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res 19:755-761 (2011).
39.
Garrido-Ramos MA, Jamilena M, de la Herrán R, Ruiz Rejón C, Camacho JPM, Ruiz Rejón M: Inheritance and fitness effects of a pericentromeric inversion and a supernumerary chromosome segment in Muscari comosum (Liliaceae). Heredity 80:724-731 (1998).
40.
Garrido-Ramos MA, de la Herrán R, Ruiz Rejón M, Ruiz Rejón C: A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia. Genome 42:442-446 (1999).
41.
Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, et al: Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559-3574 (2012).
42.
Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ: Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res 23:187-197 (2015).
43.
Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E: On the immortality of television sets: ‘function' in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5:578-590 (2013).
44.
Graur D, Zheng Y, Azevedo RBR: An evolutionary classification of genomic function. Genome Biol Evol 7:642-645 (2015).
45.
Gregory TR: Genome size evolution in animals, in Gregory TR (ed): The Evolution of the Genome, pp 3-87 (Elsevier, Burlington 2005).
46.
Hall SE, Kettler G, Preuss D: Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:119-205 (2003).
47.
Hall SE, Luo S, Hall AE, Preuss D: Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170:1913-1927 (2005).
48.
He L, Liu J, Torres GA, Zhang H, Jiang J, Xie C: Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res 21:5-13 (2013).
49.
Henderson E: Telomere DNA structure, in Blackburn EH, Greider CW (eds): Telomeres, pp 11-34 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1995).
50.
Henikoff S, Ahmad K, Malik HS: The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098-1102 (2001).
51.
Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B: An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376-382 (2006).
52.
Houben A, Carchilan M: Plant B chromosomes: what makes them different?, in Bass HW, Birchler JA (eds): Plant Cytogenetics: Genome Structure and Chromosome Function (Plant Genetics and Genomics: Crops and Models 4), pp 59-77 (Springer, Berlin 2012).
53.
Hough J, Hollister JD, Wang W, Barrett SCH, Wright SI: Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc Natl Acad Sci USA 111:7713-7718 (2014).
54.
Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J: Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204 (2010).
55.
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, et al: The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476-481 (2011).
56.
Hudakova S, Michalek W, Presting GG, ten Hoopen R, dos Santos K, et al: Sequence organization of barley centromeres. Nucleic Acids Res 29:5029-5035 (2001).
57.
Iwata A, Tek AL, Richard MMS, Abernathy B, Fonsêca A, et al: Identification and characterization of functional centromeres of the common bean. Plant J 76:47-60 (2013).
58.
Jain D, Hebden AK, Nakamura TM, Miller KM, Cooper JP: HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467:223-227 (2010).
59.
Jamilena M, Garrido-Ramos MA, Ruiz Rejón M, Ruiz Rejón C, Parker JS: Characterisation of repeated sequences from microdissected B chromosomes of Crepis capillaris. Chromosoma 104:113-120 (1995a).
60.
Jamilena M, Martínez F, Garrido-Ramos MA, Ruiz Rejón C, Romero AT, et al: Inheritance and fitness effects analysis for a euchromatic supernumerary chromosome segment in Scilla autumnalis (Liliaceae). Bot J Linn Soc 118: 249-259 (1995b).
61.
Jo SH, Koo DH, Kim JF, Hur CG, Lee S, et al: Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biol 9:42 (2009).
62.
Kazama Y, Sugiyama R, Suto Y, Uchida W, Kawano S: The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. Genome 49:520-530 (2006).
63.
Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, et al: Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8:e45519 (2013).
64.
Kipling D: The Telomere (Oxford University Press, Oxford/New York/Tokyo 1995).
65.
Kishii M, Nagaki K, Tsujimoto H, Sasakuma T: Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae). Chromosome Res 7:519-529 (1999).
66.
Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novák P, Houben A: High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol 199:550-558 (2013).
67.
Krawinkel U, Zoebelein G, Bothwell ALM: Palindromic sequences are associated with sites of DNA breakage during gene conversion. Nucleic Acids Res 14:3871-3882 (1986).
68.
Kubat Z, Hobza R, Vyskot B, Kejnovsky E: Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:350-356 (2008).
69.
Lee HR, Neumann P, Macas J, Jiang J: Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505-2520 (2006).
70.
Lee SI, Kim NS: Transposable elements and genome size variations in plants. Genomics Inform 12:87-97 (2014).
71.
Li B, Choulet F, Heng Y, Hao W, Paux P, et al: Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J 73:952-965 (2013).
72.
Lim KY, Matyášek R, Lichtenstein CP, Leitch AR: Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245-258 (2000).
73.
Lim KY, Kovarik A, Matyášek R, Chase MW, Knapp S, et al: Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907-919 (2006).
74.
López-Flores I, Garrido-Ramos MA: The repetitive DNA content of eukaryotic genomes, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn, vol 7, pp 1-28 (Karger, Basel 2012).
75.
Louis EJ, Vershinin AV: Chromosome ends: different sequences may provide conserved functions. Bioessays 27:685-697 (2005).
76.
Luchetti A, Cesari M, Carrara G, Cavicchi S, Passamonti M, et al: Unisexuality and molecular drive: Bag320 sequence diversity in Bacillus taxa (Insecta, Phasmatodea). J Mol Evol 56:587-596 (2003).
77.
Ma J, Jackson SA: Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251-259 (2006).
78.
Ma J, Wing RA, Bennetzen JL, Jackson SA: Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134-139 (2007).
79.
Macas J, Požárková D, Navrátilová A, Nouzová M, Neumann P: Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet 263:741-751 (2000).
80.
Macas J, Mészáros T, Nouzová M: PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28-35 (2002).
81.
Macas J, Navrátilová A, Koblížková A: Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma 115:437-447 (2006).
82.
Macas J, Neumann P, Navratilova A: Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427 (2007).
83.
Macas J, Koblizkova A, Navratilova A, Neumann P: Hypervariable 3′ UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 448:198-206 (2009).
84.
Macas J, Neumann P, Novák P, Jiang J: Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics 26:2101-2108 (2010).
85.
Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B: Next generation sequencing-based analysis of repetitive DNA in the model dioecious plant Silene latifolia. PLoS One 6:e27335 (2011).
86.
Malik HS, Henikoff S: Adaptive evolution of Cid, a centromere specific histone in Drosophila. Genetics 157:1293-1298 (2001).
87.
Mariotti B, Navajas-Pérez R, Lozano R, Parker JS, de la Herrán R, et al: Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa. Genome 49:114-121 (2006).
88.
Mariotti B, Manzano S, Kejnovský E, Vyskot B, Jamilena M: Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 281:249-259 (2009).
89.
Martínez P, Blasco MA: Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11:161-176 (2011).
90.
Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FR, Macas J, et al: Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA 109:13343-13346 (2012).
91.
Mehrotra S, Goyal V: Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12:164-171 (2014).
92.
Mehrotra S, Goel S, Raina SN, Rajpal VR: Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms. Appl Biochem Biotechnol 173:1790-1801 (2014).
93.
Melters DP, Bradnam KR, Young HA, Telis N, May MR, et al: Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10 (2013).
94.
Meštrović N, Castagnone-Sereno P, Plohl M: Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. Mol Biol Evol 23:2316-2325 (2006).
95.
Mravinac B, Plohl M, Ugarkovic D: Preservation and high sequence conservation of satellite DNAs indicate functional constraints. J Mol Evol 61:542-550 (2005).
96.
Nagaki K, Neumann P, Zhang DF, Ouyang S, Buell CR, et al: Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845-855 (2005).
97.
Navajas-Pérez R, de la Herrán R, López González G, Jamilena M, Lozano R, et al: The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol Biol Evol 22:1929-1939 (2005a).
98.
Navajas-Pérez R, de la Herrán R, Jamilena M, Lozano R, Rejón CR, et al: Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 60:391-399 (2005b).
99.
Navajas-Pérez R, Schwarzacher T, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA: The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368:61-71 (2006).
100.
Navajas-Pérez R, Rubio-Escudero C, Aznarte JL, Rejón MR, Garrido-Ramos MA: SatDNA Analyzer: a computing tool for satellite-DNA evolutionary analysis. Bioinformatics 23:767-768 (2007).
101.
Navajas-Pérez R, Schwarzacher T, Ruiz Rejón M, Garrido-Ramos MA: Characterization of RUSI, a telomere-associated satellite DNA, in the genus Rumex (Polygonaceae). Cytogenet Genome Res 124:81-89 (2009a).
102.
Navajas-Pérez R, Schwarzacher T, Ruiz Rejón M, Garrido-Ramos MA: Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system. Genetica 135:87-93 (2009b).
103.
Navajas-Pérez R, Quesada del Bosque ME, Garrido-Ramos MA: Effect of location, organization and repeat-copy number in satellite-DNA evolution. Mol Genet Genomics 282:395-406 (2009c).
104.
Navrátilová A, Koblizková A, Macas J: Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90 (2008).
105.
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, et al: Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4 (2011).
106.
Neumann P, Navratilova A, Schroeder-Reiter E, Koblizkova A, Steinbauerova V, et al: Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8:e1002777 (2012).
107.
Novák P, Neumann P, Macas J: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378 (2010).
108.
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J: RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792-793 (2013).
109.
Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J: Genome-wide analysis of repeat diversity across the family Musaceae. PLoS One 9:e98918 (2014).
110.
Ohno S: So much ‘junk' DNA in our genome. Brookhaven Symp Biol 23:366-370 (1972).
111.
Pedersen C, Rasmussen SK, Linde-Laursen I: Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39:93-104 (1996).
112.
Pérez-Gutiérrez MA, Suárez-Santiago VN, López-Flores I, Romero AT, Garrido-Ramos MA: Concerted evolution of satellite DNA in Sarcocapnos: a matter of time. Plant Mol Biol 78:19-29 (2012).
113.
Peška V, Fajkus P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Polanská P, Leitch AR, Sýkorová E, Fajkus J: Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J 82:644-654 (2015).
114.
Pezer Ž, Brajković J, Feliciello I, Ugarković Ð: Satellite DNA-mediated effects on genome regulation, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn, vol 7, pp 153-169 (Kar-ger, Basel 2012).
115.
Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, et al: Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601-3611 (2012).
116.
Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, et al: Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262-1269 (2006).
117.
Plohl M, Luchetti A, Meštrović N, Mantovani B: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72-82 (2008).
118.
Plohl M, Petrović V, Luchetti A, Ricci A, Satović E, et al: Long-term conservation vs high sequence divergent: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity (Edinb) 104:543-551 (2010).
119.
Plohl M, Meštrović N, Mravinac B: Satellite DNA evolution, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn, vol 7, pp 126-152 (Karger, Basel 2012).
120.
Plohl M, Meštrović N, Mravinac B: Centromere identity from the DNA point of view. Chromosoma 123:313-325 (2014).
121.
Quesada del Bosque ME, Navajas-Pérez R, Panero JL, Fernández-González A, Garrido-Ramos MA: A satellite DNA evolutionary analysis in the North American endemic dioecious plant Rumex hastatulus (Polygonaceae). Genome 54:253-260 (2011).
122.
Quesada del Bosque ME, López-Flores I, Suárez-Santiago VN, Garrido-Ramos MA: Differential spreading of HinfI satellite DNA variants during radiation in Centaureinae. Ann Bot 112:1793-1802 (2013).
123.
Quesada del Bosque ME, López-Flores I, Suárez-Santiago VN, Garrido-Ramos MA: Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae, Asteraceae). J Plant Res 127:575-83 (2014).
124.
Raina SN, Sharma S, Sasakuma T, Kishii M, Vaishnavi S: Novel Repeated DNA Sequences in Safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J Hered 96:424-429 (2005).
125.
Richard MMS, Chen NWG, Thareau V, Pflieger E, Blanchet S, et al: The subtelomeric khipu satellite repeat from Phaseolus vulgaris: lessons learned from the genome analysis of the Andean genotype G19833. Front Plant Sci 4:109 (2013).
126.
Robles F, de la Herrán R, Ludwig A, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos, MA: Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133-142 (2004).
127.
Ruiz Rejón C, Jamilena M, Garrido-Ramos MA, Parker JS, Ruiz Rejón M: Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 72:209-215 (1994).
128.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al: The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112-1115 (2009).
129.
Schweizer D, Loidl J: A model for heterochromatin dispersion and the evolution of C-band patterns, in Hayman DL, Rofe RH, Sharp PJ (eds): Chromosomes Today, vol 9, pp 61-74 (Allen & Unwin, London 1987).
130.
Sharma A, Wolfgruber TK, Presting GG: Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:142 (2013).
131.
Shibata F, Hizume M, Kuroki Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266-270 (1999).
132.
Shibata F, Hizume M, Kuroki Y: Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res 8:229-236 (2000a).
133.
Shibata F, Hizume M, Kuroki Y: Molecular cytogenetic analysis of supernumerary heterochromatic segments in Rumex acetosa. Genome 43:391-397 (2000b).
134.
Silva-Sousa R, López-Panadès E, Casacuberta E: Drosophila telomeres: an example of co-evolution with transposable elements, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn, vol 7, pp 46-67 (Karger, Basel 2012).
135.
Silvestre DC, Londoño-Vallejo A: Telomere dynamics in mammals, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn, vol 7, pp 29-45 (Karger, Basel 2012).
136.
Smith BW: Evolution of sex-determining mechanisms in Rumex, in Hayman DL, Rofe RH, Sharp PJ (eds): Chromosomes Today, vol 2, pp 172-182 (Allen & Unwin, London 1969).
137.
Steflova P, Tokan V, Vogel I, Lexa M, Macas J, et al: Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol Evol 5:769-782 (2013).
138.
Strachan T, Webb D, Dover G: Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J 4:1701-1708 (1985).
139.
Stupar RM, Song J, Tek AL, Cheng Z, Dong F, Jiang J: Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162:1435-1444 (2002).
140.
Suárez-Santiago VN, Blanca G, Ruiz-Rejón M, Garrido-Ramos MA: Satellite-DNA evolutionary patterns under a complex evolutionay scenario: the case of Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean. Gene 404:80-92 (2007).
141.
Sýkorová E, Lim KY, Kunická Z, Chase MW, Bennett MD, et al: Telomere variability in the monocotyledonous plant order Asparagales. Proc Biol Sci 270:1893-1904 (2003a).
142.
Sýkorová E, Lim KY, Chase MW, Knapp S, Leitch IJ, et al: The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34:283-291 (2003b).
143.
Sýkorová E, Cartagena J, Horáková M, Fukui K, Fajkus J: Characterization of telomere-subtelomere junctions in Silene latifolia. Mol Gen Genomics 269:13-20 (2003c).
144.
Sykorová E, Fajkus J, Mezníková M, Lim KY, Neplechová K, et al: Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot 93:814-823 (2006).
145.
Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, et al: Organization and evolution of subtelomeric satellite repeats in the potato genome. G3 (Bethesda) 1:85-92 (2011).
146.
Vershinin AV, Heslop-Harrison JS: Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol Biol 36:149-161 (1998).
147.
Vershinin AV, Alkhimova EG, Heslop-Harrison JS: Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Res 4:517-25 (1996).
148.
Vyskot B, Hobza R: The genomics of plant sex chromosomes. Plant Sci 236:126-135 (2015).
149.
Wang G, Zhang X, Jin W: An overview of plant centromeres. J Genet Genomics 36:529-537 (2009).
150.
Zhang B, Lv Z, Pang J, Liu Y, Guo X, et al: Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell 25:1979-1989 (2013a).
151.
Zhang M, Zhao H, Xie S, Chen J, Xu Y, et al: Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci USA 108:20042-20047 (2011).
152.
Zhang T, Talbertc PB, Zhang W, Wua Y, Yang Z, et al: The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci USA 110:E4875-E4883 (2013b).
153.
Zhang W, Lee HR, Koo DH, Jiang J: Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25-34 (2008).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.