Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America.

1.
Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F: Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407-415 (2004).
[PubMed]
2.
Arcila D, Pyron RA, Tyler JC, Ortí G, Betancur-R R: An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). Mol Phylogenet Evol 82:131-145 (2015).
[PubMed]
3.
Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, et al: BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol 61:170-173 (2012).
[PubMed]
4.
Báez AM: The fossil record of the Pipidae, in Tinsley RC, Kobel HR (eds): The Biology of Xenopus, pp 329-347 (The Zoological Society of London, Oxford 1996).
5.
Báez AM: Anurans from the Early Cretaceous Lagerstätte of Las Hoyas, Spain: new evidence on the Mesozoic diversification of the crown-clade Anura. Cretaceous Res 41:90-106 (2013).
6.
Báez AM, Harrison T: A new pipine frog from an Eocene crater lake in North-Central Tanzania. Palaeontology 48:723-737 (2005).
7.
Báez AM, Pugener LA: A new Paleogene pipid frog from Northwestern Patagonia. J Vertebr Paleontol 18:511-524 (1998).
8.
Báez AM, Pugener LA: Ontogeny of a new Palaeogene pipid frog from southern South America and xenopodinomorph evolution. Zool J Linn Soc 139:439-476 (2003).
9.
Báez AM, Rage JC: Pipid frogs from the Upper Cretaceous of In Beceten, Niger. Paleontology 41:669-691 (1998).
10.
Báez AM, Sanchiz B: A review of Neusibatrachuswilferti, an Early Cretaceous frog from the Montsec Range, northeastern Spain. Acta Palaeontol Pol 52:477-487 (2007).
11.
Báez AM, Trueb L: Redescription of the Paleogene Shelaniapascuali from Patagonia and its bearing on the relationships of fossil and recent pipoid frogs. Sci Pap Nat Hist Mus Univ Kans 4:1-41 (1997).
12.
Báez AM, Trueb L, Calvo JO: The earliest known pipoid frog from South America: a new genus from the Middle Cretaceous of Argentina. J Vertebr Paleontol 20:490-500 (2001).
13.
Báez AM, Muzzopappa P, Nicoli L: Anurans from the Candeleros Formation (?Cenomanian-Turonian) of west-central Argentina: new evidence for pipoid evolution. Cretaceous Res 28:1005-1016 (2007).
14.
Baker J, Snee L, Menzies M: A brief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction. Earth Planet Sci Let 138:39-55 (1996).
15.
Bellon H, Bůžek Č, Gaudant J, Kvaček Z, Walther HH: The České Středohoří magmatic complex in Northern Bohemia 40K-40Ar ages for volcanism and biostratigraphy of the Cenozoic freshwater formations. Newsl Strat 36:77-103 (1998).
16.
Benton MJ, Donoghue PCJ, Asher RJ, Friedman M, Near TJ, Vinther J: Constraints on the timescale of animal evolutionary history. Palaeont Electron 18.1.1FC:1-106 (2015).
17.
Bewick AJ, Chain FJJ, Heled J, Evans BJ: The pipid root. Syst Biol 61:913-926 (2012).
[PubMed]
18.
Bilbey SA: Cleveland-Lloyd Dinosaur Quarry - age, stratigraphy and depositional environments, in Carpenter K, Chure D, Kirkland JI (eds): The Morrison Formation: An Interdisciplinary Study. Mod Geol 22:87-120 (1998).
19.
Bisbee CA, Baker MA, Wilson AC, Hadji-Azimi I, Fischberg M: Albumin phylogeny for clawed frogs (Xenopus). Science 195:785-787 (1977).
[PubMed]
20.
Blackburn DC, Bickford DP, Diesmos AC, Iskandar DT, Brown RM: An ancient origin for the enigmatic flat-headed frogs (Bombinatoridae: Barbourula) from the islands of Southeast Asia. PLoS One 5:e12090 (2010).
[PubMed]
21.
Brown JM, Lemmon AR: The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 56:643-655 (2007).
[PubMed]
22.
Cannatella DC: Architecture: cranial and axial musculoskeleton, in McDiarmid RW, Altig R (eds): Tadpoles, pp 52-91 (University of Chicago Press, Chicago 1999).
23.
Cannatella DC, de Sá RO: Xenopus laevis as a model organism. Syst Biol 42:476-507 (1993).
24.
Cannatella DC, Trueb L: Evolution of pipoid frogs: intergeneric relationships of the aquatic frog family Pipidae (Anura). Zool J Linn Soc 94:1-38 (1988a).
25.
Cannatella DC, Trueb L: Evolution of pipoid frogs: morphology and phylogenetic relationships of Pseudhymenochirus. J Herpetol 22:439-456 (1988b).
26.
Cohen KM, Finney SM, Gibbard PL, Fan JX: The ICS International Chronostratigraphic Chart. Episodes 36:199-204 (2013, updated January 2015). Downloaded March 5, 2015 from http://www.stratigraphy.org/ICSchart/ChronostratChart2015-01.pdf.
27.
de Oliveira FB, Molina EC, Marroig G: Paleogeography of the South Atlantic: a route for primates and rodents into the New World?, in Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds): South American Primates. Comparative Perspectives in the Study of Behavior, Ecology, and Conservation, pp 55-68 (Springer, New York 2009).
28.
de Sá RO, Hillis DM: Phylogenetic relationships of the pipid frogs Xenopus and Silurana: an integration of ribosomal DNA and morphology. Mol Biol Evol 7:365-376 (1990).
[PubMed]
29.
Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969-1973 (2012).
[PubMed]
30.
Estes R: Fossil Xenopus from the Paleocene of South America and the zoogeography of pipid frogs. Herpetologica 31:263-278 (1975).
31.
Estes R: Relationships of the South African fossil frog Eoxenopoidesreuningi (Anura, Pipidae). Ann South Afr Mus 73:49-80 (1977).
32.
Evans BJ: Ancestry influences the fate of duplicated genes millions of years after polyploidization of clawed frogs (Xenopus). Genetics 176:1119-1130 (2007).
[PubMed]
33.
Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC: A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197-213 (2004).
[PubMed]
34.
Evans SE, Milner AR, Mussett F: A discoglossid frog from the Middle Jurassic of England. Palaeontology 33:299-311 (1990).
35.
Ezcurra MD, Agnolín FL: A new global palaeobiogeographical model for the late Mesozoic and early Tertiary. Syst Biol 61:553-566 (2012).
[PubMed]
36.
Ford LS, Cannatella DC: The major clades of frogs. Herpetol Monogr 7:94-117 (1993).
37.
Garrido AC: Estratigrafía del Grupo Neuquén, Cretácico Superior de la Cuenca Neuquina (Argentina): nueva propuesta de ordenamiento litoestratigráfico. Rev Mus Argent Cienc Nat, ns 12:121-177 (2010).
38.
Gvirtzman G, Weissbrod T, Baer G, Brenner GJ: The age of the Aptian Stage and its magnetic events: New Ar-Ar ages and palaeomagnetic data from the Negev, Israel. Cretaceous Res 17:293-310 (1996).
39.
Heath TA, Moore BR: Bayesian inference of species divergence times, in Chen MH, Kuo L, Lewis PO (eds): Bayesian Phylogenetics: Methods, Algorithms, and Applications, pp 277-318 (Chapman and Hall CRC, Boca Raton 2014).
40.
Hedtke SM, Morgan MJ, Cannatella DC, Hillis DM: Targeted enrichment: maximizing orthologous gene comparisons across deep evolutionary time. PLoS One 8:e67908 (2013).
[PubMed]
41.
Henrici AC: Chelomophrynus bayi (Amphibia, Anura, Rhinophrynidae), a new genus and species from the Middle Eocene of Wyoming: ontogeny and relationships. Ann Carnegie Mus 60:97-144 (1991).
42.
Henrici AC: A new pipoid anuran from the Late Jurassic Morrison Formation at Dinosaur National Monument, Utah. J Vertebr Paleontol 18:321-332 (1998a).
43.
Henrici AC: New anurans from the Rainbow Park microsite, Dinosaur National Monument, Utah. Mod Geol 23:1-16 (1998b).
44.
Henrici AC, Báez AM: First occurrence of Xenopus (Anura: Pipidae) on the Arabian Peninsula: a new species from the Upper Oligocene of Yemen. J Paleontol 75:870-882 (2001).
45.
Irissari I, Vences M, San Mauro D, Glaw F, Zardoya R: Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae. BMC Evol Biol 11:114 (2011).
[PubMed]
46.
Irissari I, San Mauro D, Abascal F, Ohler A, Vences M, Zardoya R: The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13:626 (2012).
[PubMed]
47.
Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 90:773-795 (1995).
48.
Kowallis BJ, Christiansen EH, Deino AL, Peterson F, Turner CE, et al: The age of the Morrison Formation. Mod Geol 22:235-260 (1998).
49.
Lepage T, Bryant D, Philippe H, Lartillot N: A general comparison of relaxed molecular clock models. Mol Biol Evol 24:2669-2680 (2007).
[PubMed]
50.
Losos JB, Hillis DM, Greene HW: Who speaks with a forked tongue? Science 338:1428-1429 (2012).
[PubMed]
51.
Marjanović D, Laurin M: An updated paleontological timetree of lissamphibians, with comments on the anatomy of Jurassic crown-group salamanders (Urodela). Hist Biol 26:535-550 (2014).
52.
Marshall LG, Sempere T, Butler RF: Chronostratigraphy of the mammal-bearing Paleocene of South America. J S Am Earth Sci 10:49-70 (1997).
53.
Martín C, Sanchiz B: Lisanfos KMS. Version 1.2, accessible at http://www.lisanfos.mncn.csic.es. (Museo Nacional de Ciencias Naturales, Madrid 2015).
54.
Mateer NJ, Wycisk P, Jacobs LL, Brunet M, Luger P, et al: Correlation of nonmarine Cretaceous strata of Africa and the Middle East. Cretaceous Res 13:273-318 (1992).
55.
Moody RTJ, Sutcliffe PJC: The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Res 12:137-157 (1991).
56.
Narváez PL, Sabino IF: Palynology of the Las Curtiembres Formation (Late Cretaceous, Salta Group Basin), Las Conchas Creek area, northwestern Argentina. Ameghiniana 45:473-482 (2008).
57.
Nevo E: Pipid frogs from the early Cretaceous of Israel and pipid evolution. Bull Mus Comp Zool Harvard Univ 136:255-318 (1968).
58.
Norell MA: Taxic origin and temporal diversity: the effect of phylogeny, in Novacek MJ, Wheeler QD (eds): Extinction and Phylogeny, pp 88-118 (Columbia University Press, New York 1992).
59.
Poux C, Chevret P, Huchon D, de Jong WW, Douzery EJP: Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 55:228-244 (2006).
[PubMed]
60.
Rambaut A, Drummond AJ: TreeAnnotator v 1.8.2. MCMC Output analysis (2015).
61.
Rambaut A, Suchard MA, Xie D, Drummond AJ: Tracer v1.6, available from http://beast.bio.ed.ac.uk/Tracer (2015).
62.
Roček Z: Larval development in Oligocene palaeobatrachid frogs. Acta Palaeontol Pol 48:595-607 (2003).
63.
Roček Z, Van Dijk E: Patterns of larval development in Cretaceous pipid frogs. Acta Palaeontol Pol 51:111-126 (2006).
64.
Roelants K, Bossuyt F: Archaeobatrachian paraphyly and Pangaean diversification of crown-group frogs. Syst Biol 54:111-126 (2005).
[PubMed]
65.
Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, et al: Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci USA 104:887-892 (2007).
[PubMed]
66.
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP: A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 61:973-999 (2012a).
[PubMed]
67.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539-542 (2012b).
[PubMed]
68.
Sanchiz B: Encyclopedia of Paleoherpetology. Part 4, Salientia (Verlag Dr. Friedrich Pfeil, München 1998).
69.
San Mauro D, Vences M, Alcobendas M, Zardoya R, Meyer A: Initial diversification of living amphibians predated the breakup of Pangaea. Am Nat 165:590-599 (2005).
[PubMed]
70.
Scanferla A, Agnolin F, Novas FE, de la Fuente M, Bellosi E, et al: A vertebrate assemblage of Las Curtiembres Formation (Upper Cretaceous) of northwestern Argentina. Rev Mus Argent Cienc Nat, ns 13:195-204 (2011).
71.
Scholtz A: Palynology of the upper lacustrine sediments of Arnot Pipe, Banke, Namaqualand. Ann S Afr Mus 95:109 (1985).
72.
Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492-508 (2002).
[PubMed]
73.
Shubin NH, Jenkins FA Jr: An Early Jurassic jumping frog. Nature 377:49-52 (1995).
74.
Smith R, Ross C, Asher R: Taphonomy and palaeoenvironments of Late Cretaceous anurans and dinosaurs from a crater lake deposit in South Africa. Abstracts of the 8th International Symposium Mesozoic Terrestrial Ecosystems, p 39, Cape Town (2002).
75.
Sokol OM: The phylogeny of anuran larvae: a new look. Copeia 1975:1-23 (1975).
76.
Soriano C, Delclòs X: New cupedid beetles from the Lower Cretaceous of Spain and the palaeogeography of the family. Acta Palaeontol Pol 51:185-200 (2006).
77.
Starrett PH: Evolutionary patterns in larval morphology, in Vial JL (ed): Evolutionary Biology of the Anurans, pp 251-271 (University Missouri Press, Columbia 1973).
78.
Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4 (Sinauer Associates, Sunderland 2002).
79.
Tinsley RC, Kobel HR: The Biology of Xenopus (Clarendon Press, Oxford 1996).
80.
Tobias ML, Evans BJ, Kelley DB: Evolution of advertisement calls in African clawed frogs. Behaviour 148:519-549 (2011).
[PubMed]
81.
Trueb L, Báez AM: Revision of the Early Cretaceous Cordicephalus from Israel and an assessment of its relationships among pipoid frogs. J Vertebr Paleontol 26:44-59 (2006).
82.
Trueb L, Ross CF, Smith R: A new pipoid anuran from the Late Cretaceous of South Africa. J Vertebr Paleontol 25:533-547 (2005).
83.
Trujillo KC, Chamberlain KR, Strickland A: Oxfordian U/Pb ages from SHRIMP analysis for the Upper Jurassic Morrison Formation of southeastern Wyoming with implications for biostratigraphic correlations. Geological Society of America Abstracts with Programs 38:7 (2006).
84.
Uliana MA, Camacho HH: Estratigrafía y paleontología de la formación Vaca Mahuida. Actas 1° Congreso Argentino de Paleontología y Bioestratigrafía, Tucumán 1:357-373 (1975).
85.
Valencio DA, Giudice A, Mendia JE, Oliver GJ: Paleomagnetísmo y edades K-Ar del Subgrupo Pirgua, Provincia de Salta, República Argentina. Actas, VI Congreso Geológico Argentino, Bahia Blanca 1, pp 527-542 (1976).
86.
Veevers JJ: Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Sci Rev 68:1-132 (2004).
87.
Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ: Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc Biol Sci 282:20141013 (2014).
[PubMed]
88.
Wilf P, Singer BS, Zamaloa M del C, Johnson KR, Cúneo NR: Early Eocene 40Ar/39Ar age for the Pampa de Jones plant, frog, and insect biota (Huitrera Formation, Neuquén Province, Patagonia, Argentina). Ameghiana 47:207-216 (2010).
89.
Wood HM, Matzke NJ, Gillespie RG, Griswold CE: Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders. Syst Biol 62:264-284 (2013).
[PubMed]
90.
Xie W, Lewis PO, Fan Y, Kuo L, Chen MH: Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150-160 (2011).
[PubMed]
91.
Yeh J: The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56:2484-2498 (2002).
[PubMed]
92.
Zhang P, Liang D, Mao RL, Hillis DM, Wake DB, Cannatella DC: Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol Biol Evol 30:1899-1915 (2013).
[PubMed]
You do not currently have access to this content.