Compared to humans and other mammals, rodent genomes, specifically Muroidea species, underwent intense chromosome reshuffling in which many complex structural rearrangements occurred. This fact makes them preferential animal models for studying the process of karyotype evolution. Here, we present the first combined chromosome comparative maps between 2 Cricetidae species, Cricetus cricetus and Peromyscus eremicus, and the index species Mus musculus and Rattus norvegicus. Comparative chromosome painting was done using mouse and rat paint probes together with in silico analysis from the Ensembl genome browser database. Hereby, evolutionary events (inter- and intrachromosomal rearrangements) that occurred in C. cricetus and P. eremicus since the putative ancestral Muroidea genome could be inferred, and evolutionary breakpoint regions could be detected. A colocalization of constitutive heterochromatin and evolutionary breakpoint regions in each genome was observed. Our results suggest the involvement of constitutive heterochromatin in karyotype restructuring of these species, despite the different levels of conservation of the C. cricetus (derivative) and P. eremicus (conserved) genomes.

Adega F, Guedes-Pinto H, Chaves R: Satellite DNA in the karyotype evolution of domestic animals - clinical considerations. Cytogenet Genome Res 126:12-20 (2009).
Adkins RM, Walton AH, Honeycutt RL: Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol Phylogenet Evol 26:409-420 (2003).
Badenhorst D, Dobigny G, Adega F, Chaves R, O'Brien PC, et al: Chromosomal evolution in Rattini (Muridae, Rodentia). Chromosome Res 19:709-727 (2011).
Brown JD, Mitchell SE, O'Neill RJ: Making a long story short: noncoding RNAs and chromosome change. Heredity 108:42-49 (2012).
Catzeflis FM, Aguilar JP, Jaeger JJ: Muroid rodents: phylogeny and evolution. Trends Ecol Evol 7:122-126 (1992).
Catzeflis FM, Dickerman AW, Michaux J, Kirsch JA: DNA hybridization and rodent phylogeny, in Szalay FS, Novacek MJ, McKenna MC (eds): Mammal Phylogeny, pp 159-172 (Springer-Verlag, New York 1993).
Cazaux B, Catalan J, Veyrunes F, Douzery E, Britton-Davidian J: Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae). BMC Evol Biol 11:124 (2011).
Chaline J, Mein P, Petter F: Les grandes lignes d'une classification évolutive des Muroidea. Mammalia 41:245-252 (1977).
Chaves R, Louzada S, Meles S, Adega F: Praomystullbergi genome (chromosome) architecture decoded by the related genomes Mus and Rattus. Chromosome Res 20:673-683 (2012).
Darai E, Kost-Alimova M, Kiss H, Kansoul H, Klein G, Imreh S: Evolutionarily plastic regions at human 3p21.3 coincide with tumor breakpoints identified by the ‘elimination test'. Genomics 86:1-12 (2005).
Deaven LL, Vidal-Rioja L, Jett JH, Hsu TC: Chromosomes of Peromyscus (Rodentia, Cricetidae). VI. The genomic size. Cytogenet Cell Genet 19:241-249 (1977).
Dubois JY, Rakotondravony D, Hänni C, Sourrouille P, Catzeflis FM: Molecular evolutionary relationships of three genera of Nesomyinae, endemic rodent taxa from Madagascar. J Mamm Evol 3:239-260 (1996).
Dubois JY, Catzeflis FM, Beintema JJ: The phylogenetic position of ‘Acomyinae' (Rodentia, Mammalia) as sister group of a Murinae + Gerbillinae clade: evidence from the nuclear ribonuclease gene. Mol Phylogenet Evol 13:181-192 (1999).
Elder FF: Tandem fusion, centric fusion, and chromosomal evolution in the cotton rat, genus Sigmodon. Cytogenet Cell Genet 26:199-210 (1980).
Engelbrecht A, Dobigny G, Robinson TJ: Further insights into the ancestral murine karyotype: the contribution of the Otomys-Mus comparison using chromosome painting. Cytogenet Genome Res 112:126-130 (2006).
Eymery A, Callanan M, Vourc'h C: The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int J Dev Biol 53:259-268 (2009).
Fabre PH, Hautier L, Dimitrov D, Douzery EJ: A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12:88 (2012).
Froenicke L, Lyons AL: Hotspots of mammalian chromosome evolution, in: Encyclopedia of Life Sciences (ELS) (John Wiley & Sons, Ltd, Chichester 2008) [].
Gamperl R, Vistorin G, Rosenkranz W: A comparative analysis of the karyotypes of Cricetus cricetus and Cricetulus griseus. Chromosoma 55:259-265 (1976).
Glasper ER, DeVries AC: Social structure influences effects of pair-housing on wound healing. Brain Behav Immun 19:61-68 (2005).
Greenbaum IF, Baker RJ: Determination of the primitive karyotype for Peromyscus. J Mammal 59:820-834 (1978).
Grewal SI, Jia S: Heterochromatin revisited. Nat Rev Genet 8:35-46 (2007).
Hanon EA, Routledge K, Dardente H, Masson-Pévet M, Morgan PJ, Hazlerigg DG: Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 22:51-55 (2010).
Hugueney M, Mein P: A comment on the earliest Spalacinae (Rodentia, Muroidea). J Mamm Evol 1:215-223 (1993).
Jacobs LL, Flynn LJ, Downs WR: Neogene rodents of Southern Asia, in Black CC, Dawson MR (eds): Papers on Fossil Rodents in Honor of Albert Elmer Wood. Science, Series No. 33, pp 157-177 (Nat Hist Mus Los Angeles County, Los Angeles 1989).
Jansa SA, Goodman SM, Tucker PK: Molecular phylogeny and biogeography of the native rodents of Madagascar (Muridae: Nesomyinae): a test of the single-origin hypothesis. Cladistics 15:253-270 (1999).
John B: The biology of heterochromatin, in Verma RS (ed): Heterochromatin: Molecular and Structural Aspects, pp 1-128 (Cambridge University Press, Cambridge 1988).
Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA 100:11484-11489 (2003).
Longo MS, Carone DM, NISC Comparative Sequencing Program, Green ED, O'Neill MJ, O'Neill RJ: Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty. BMC Genomics 10:334 (2009).
Louzada S, Paço A, Kubickova S, Adega F, Guedes-Pinto H, et al: Different evolutionary trails in the related genomes Cricetuscricetus and Peromyscuseremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Micron 39:1149-1155 (2008).
Matthey R: Chromosomes de Muridae (Microtinae et Cricetinae). Chromosoma 5:113-138 (1952).
Michaux J, Reyes A, Catzeflis F: Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18:2017-2031 (2001).
Miller GS, Gidley JW: Synopsis of supergeneric groups of rodents. J Wash Acad Sci 8:431-448 (1911).
Mlynarski EE, Obergfell CJ, Rens W, O'Brien PC, Ramsdell CM, et al: Peromyscus maniculatus - Mus musculus chromosome homology map derived from reciprocal cross species chromosome painting. Cytogenet Genome Res 121:288-292 (2008).
Murphy WJ, Stanyon R, O'Brien SJ: Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2:1-8 (2001).
Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, et al: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613-617 (2005).
Musser G, Carleton MD: Superfamily Muroidea, in Wilson DE, Reeder DM (eds): Mammal Species of the World: A Taxonomic and Geographic Reference, ed 3, pp 894-1531 (Johns Hopkins University Press, Baltimore 2005).
Nadeau JH, Taylor BA: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814-818 (1984).
Nilsson S, Helou K, Walentinsson A, Szpirer C, Nerman O, Stahl F: Rat-mouse and rat-human comparative maps based on gene homology and high-resolution zoo-FISH. Genomics 74:287-298 (2001).
Paço A, Adega F, Guedes-Pinto H, Chaves R: Hidden heterochromatin: characterization in the Rodentia species Cricetuscricetus, Peromyscuseremicus (Cricetidae) and Praomystullbergi (Muridae). Genet Mol Biol 32:58-68 (2009).
Pathak S, Hsu TC, Arrighi FE: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet Cell Genet 12:315-326 (1973).
Peacock WJ, Dennis ES, Gerlach WL: DNA sequence changes and speciation. Prog Clin Biol Res 96:123-142 (1982).
Peng Q, Pevzner PA, Tesler G: The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput Biol 2:e14 (2006).
Petrović V, Plohl M: Sequence divergence and conservation in organizationally distinct subfamilies of Donaxtrunculus satellite DNA. Gene 362:37-43 (2005).
Rabbitts P, Impey H, Heppell-Parton A, Langford C, Tease C, et al: Chromosome specific paints from a high resolution flow karyotype of the mouse. Nat Genet 9:369-375 (1995).
Ramsdell CM, Lewandowski AA, Glenn JL, Vrana PB, O'Neill RJ, Dewey MJ: Comparative genome mapping of the deer mouse (Peromyscus maniculatus) reveals greater similarity to rat (Rattus norvegicus) than to the lab mouse (Mus musculus). BMC Evol Biol 8:65 (2008).
Robinson M, Catzeflis F, Briolay J, Mouchiroud D: Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT. Mol Phylogenet Evol 8:423-434 (1997).
Robinson TJ, Ruiz-Herrera A, Froenicke L: Dissecting the mammalian genome - new insights into chromosomal evolution. Trends Genet 22:297-301 (2006).
Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS, et al: Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17:1183-1192 (2006).
Romanenko SA, Volobouev VT, Perelman PL, Lebedev VS, Serdukova NA, et al: Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 15:283-297 (2007).
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS: Chromosomal evolution in Rodentia. Heredity (Edinb) 108:4-16 (2012).
Rousselet J, Monti L, Auger-Rozenberg MA, Parker JS, Lemeunier F: Chromosome fission associated with growth of ribosomal DNA in Neodiprion abietis (Hymenoptera: Diprionidae). Proc Biol Sci 267:1819-1823 (2000).
Ruiz-Herrera A, Castresana J, Robinson TJ: Is mammalian evolution driven by regions of genome fragility? Genome Biol 7:R115 (2006).
Sankoff D, Deneault M, Turbis P, Allen C: Chromosomal distributions of breakpoints in cancer, infertility, and evolution. Theor Popul Biol 61:497-501 (2002).
Stanyon R, Yang F, Cavagna P, O'Brien PC, Bagga M, et al: Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet 84:150-155 (1999).
Stanyon R, Yang F, Morescalchi AM, Galleni L: Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 105:406-411 (2004).
Steppan SJ, Adkins RM, Anderson J: Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533-553 (2004).
Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. (Sinauer Associates, Sunderland 2003).
The Committee for Standardization of Chromosomes of Peromyscus: Standardized karyotype of deer mice, Peromyscus (Rodentia). Cytogenet Cell Genet 19:38-43 (1977).
van Wolfswinkel JC, Ketting RF: The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 123:1825-1839 (2010).
Veyrunes F, Catalan J, Sicard B, Robinson TJ, Duplantier JM, et al: Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys (Muridae; Mus). Chromosome Res 12:369-382 (2004).
Veyrunes F, Dobigny G, Fengtang Y, O'Brien PC, Catalan J, et al: Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc Biol Sci 273:2925-2934 (2006).
Wienberg J, Stanyon R, Nash WG, O'Brien PC, Yang F, et al: Conservation of humans vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77:211-217 (1997).
Yang F, O'Brien PC, Wienberg J, Ferguson-Smith MA: A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res 5:109-117 (1997).
Yang F, O'Brien PC, Ferguson-Smith MA: Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8:219-227 (2000).
Yunis JJ, Yasmineh WG: Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science 174:1200-1209 (1971).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.