Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards.

1.
Arribas OJ, Carranza S: Morphological and genetic evidence of the full species status of Iberolacerta martinezricai (Arribas, 1996). Zootaxa 634:1-24 (2004).
2.
Arribas OJ, Odierna G: Karyological and and osteological data supporting the specific status of Iberolacerta (cyreni) martinezricai (Arribas, 1996). Amphibia-Reptilia 25:359-368 (2004).
3.
Arribas OJ, Carranza S, Odierna G: Description of a new endemic species of mountain lizard from Northwestern Spain: Iberolacerta galani sp. nov. (Squamata: Lacertidae). Zootaxa 1240:1-55 (2006).
4.
Barragán MJL, Martínez S, Marchal JA, Bullejos M, Díaz de la Guardia R, Sánchez Bullejos A: Highly repeated DNA sequences in three species of the genus Pteropus (Megachiroptera, Mammalia). Heredity 88:366-370 (2002).
5.
Bertolotto CEV, Rodrigues MT, Yonenaga-Yassuda Y: Banding patterns, multiple sex chromosome system and localization of telomeric (TTAGGG)n sequences by FISH on two species of Polychrus (Squamata, Polychrotidae). Caryologia 54:217-226 (2001).
6.
Bolzán AD: Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 27:1-15 (2012).
7.
Capriglione T, De Santo MG, Odierna G, Olmo E: An alphoid-like satellite DNA sequences is present in the genome of a lacertid lizard. J Mol Evol 46:240-244 (1998).
8.
Capula M, Lapini L, Capanna E: The karyotype of Lacerta horváthi (Reptilia, Sauria, Lacertidae). Genetica 79:11-16 (1989).
9.
Carranza S, Arnold EN, Amat F: DNA phylogeny of Lacerta (Iberolacerta) and other lacertine lizards (Reptilia: Lacertidae): did competition cause long-term mountain restriction? Syst Biodivers 2:57-77 (2004).
10.
Charlesworth D, Mank JE: The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 186:9-31 (2010).
11.
Charlesworth D, Charlesworth B, Marais G: Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118-128 (2005).
12.
Crochet PA, Chaline O, Surget-Groba Y, Debain C, Cheylan M: Speciation in mountains: phylogeography and phylogeny of the rock lizards genus Iberolacerta (Reptilia: Lacertidae). Mol Phylogenet Evol 30:860-866 (2004).
13.
Ezaz T, Sarre SD, O'Meally D, Marshall Graves JA, Georges A: Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res 127:249-260 (2009).
14.
Galán P: Declive y extinciones puntuales en poblaciones de baja altitud de Lacerta monticola cantabrica. Bol Asoc Herpetol Esp 10:47-51 (1999).
15.
Galán P, Vila M, Remón N, Naveira HF: Caracterización de las poblaciones de Iberolacerta monticola en el Noroeste ibérico mediante la combinación de datos morfológicos, ecológicos y genéticos. Munibe 25:34-43 (2007).
16.
Garagna S, Ronchetti E, Mascheretti S, Crovella S, Formenti D, et al: Non-telomeric chromosome localization of (TTAGGG)n repeats in the genus Eulemur. Chromosome Res 5:487-491 (1997).
17.
Giovannotti M, Caputo V, O'Brien PC, Lovell FL, Trifonov V, et al: Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting. Cytogenet Genome Res 127:224-231 (2009a).
18.
Giovannotti M, Nisi Cerioni P, Caputo V, Olmo E: Characterisation of a GC-rich telomeric satelliteDNA in Eumeces schneideri Daudin (Reptilia, Scincidae). Cytogenet Genome Res 125:272-278 (2009b).
19.
Go Y, Rakotoarisoa G, Kawamoto Y, Randrianjafy A, Koyama N, Hirai H: PRINS analysis of the telomeric sequence in seven lemurs. Chromosome Res 8:57-65 (2000).
20.
González-Tizón A, Martínez-Lage A, Rego I, Ausió J, Méndez J: DNA content, karyotype, and chromosomal location of 18S-5.8S-28S ribosomal loci in some species of bivalve molluscs from the Pacific Canadian coast. Genome 43:1065-1072 (2000).
21.
Hartmann N, Scherthan H: Characterization of ancestral chromosome fusion points in the Indian muntjac deer. Chromosoma 112:213-220 (2004).
22.
Howell WM, Black DA: Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 3:1014-1015 (1980).
23.
in den Bosch HAJ, Odierna G, Aprea G, Barucca M, Canapa A, et al: Karyological and genetic variation in Middle Eastern lacertid lizards Lacerta laevis and Lacerta kulzeri complex: a case of chromosomal allopatric speciation. Chromosome Res 11:165-178 (2003).
24.
King LM, Cummings MP: Satellite DNA repeat sequence variation is low in three species of burying beetles in the genus Nicrophorus (Coleoptera: Silphidae). Mol Biol Evol 14:1088-1095 (1997).
25.
Kupriyanova LA, Melashchenko O: The common Eurasian lizard Zootoca vivipara (Jacquin, 1787) from Russia: sex chromosomes, subspeciation, and colonization. Russ J Herpetol 18:99-104 (2011).
26.
Lee C, Sasi R, Lin CC: Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet Cell Genet 63:156-159 (1993).
27.
Lin KW, Yan J: Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res 658:95-110 (2008).
28.
Malykh AG, Zhurov VG, Saifitdinova AF, Deryusheva SE, Gaginskaya ER: Structural and functional characterization of a centromeric highly repetitive DNA sequence of Fringilla coelebs L. (Aves: Passeriformes). Mol Biol 35:331-335 (2001).
29.
Mayer W, Arribas O: Phylogenetic relationships of the European lacertid genera Archaeolacerta and Iberolacerta and their relationships to some other ‘Archaeolacertae' (sensu lato) from Near East, derived from mitochondrial DNA sequences. J Zool Syst Evol Res 41:157-161 (2003).
30.
Meneveri R, Agresti A, Rocchi M, Marozzi A, Ginelli E: Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol 40:405-412 (1995).
31.
Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, et al: Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3-10 (1990).
32.
Muniyappa K, Anuradha S, Byers B: Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 20:1361-1369 (2000).
33.
Nanda I, Schmid M: Localization of the telomeric (TTAGGG)n sequence in chicken (Gallus domesticus) chromosomes. Cytogenet Cell Genet 65:190-193 (1994).
34.
Nanda I, Fugate M, Steinlein C, Schmid M: Distribution of (TTAGGG)n telomeric sequences in karyotypes of the Xenopus species complex. Cytogenet Genome Res 122:396-400 (2008).
35.
Naurin S, Hansson B, Bensch S, Hasselquist D: Why does dosage compensation differ between XY and ZW taxa? Trends Genet 26:15-20 (2010).
36.
Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E: Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res 14:1704-1710 (2004).
37.
Nergadze SG, Santagostino MA, Salzano A, Mondello C, Giulotto E: Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol 8:R260 (2007).
38.
Odierna G, Olmo E, Cobror O: Taxonomic implications of NOR-localisation in lacertid lizards. Amphibia-Reptilia 8:373-381 (1987).
39.
Odierna G, Kupriyanova LA, Capriglione T, Olmo E: Further data on sex chromosomes of Lacertidae and a hypothesis on their evolutionary trend. Amphibia-Reptilia 14:1-11 (1993).
40.
Odierna G, Aprea G, Arribas OJ, Capriglione T, Caputo V, Olmo E: The karyology of the Iberian rock lizards. Herpetologica 52:542-550 (1996).
41.
Odierna G, Heulin B, Guillaume CP, Vogrin N, Aprea G, et al: Further analysis of the karyological variations existing within and between oviparous and viviparous forms of Lacerta (Zootoca) vivipara: evolutionary and biogeographic implications. Ecography 24:332-340 (2001).
42.
Olmo E, Odierna G, Cobror O: C-band variability and phylogeny of Lacertidae. Genetica 71:63-74 (1986).
43.
Olmo E, Odierna G, Capriglione T: Evolution of sex-chromosomes in lacertid lizards. Chromosoma 96:33-38 (1987).
44.
Olmo E, Odierna G, Capriglione T: The karyology of Mediterranean lacertid lizards, in Valakos ED, Boehme W, Pérez-Mellado V, Maragou P (eds): Lacertids of the Mediterranean Region: A Biological Approach, pp 61-84 (Hellenic Zoological Society, Athens 1993).
45.
Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y: Chromosomal evolution in the Brazilian lizards of genus Leposoma (Squamata, Gymnophthalmidae) from Amazon and Atlantic rain forests: banding patterns and FISH of telomeric sequences. Hereditas 131:15-21 (1999).
46.
Petrović V, Pérez-García C, Pasantes JJ, Šatović E, Prats E, Plohl M: A GC-rich satellite DNA and karyology of the bivalve mollusc Donax trunculus: a dominance of GC-rich heterochromatin. Cytogenet Genome Res 124:63-71 (2009).
47.
Plohl M, Luchetti A, Meštrović N, Mantovani B: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72-82 (2008).
48.
Remón N, Galán P, Vila M, Arribas O, Naveira H: Causes and evolutionary consequences of population subdivision of an Iberian mountain lizard, Iberolacerta monticola. PLoS One 8:e66034 (2013).
49.
Roiha H, Miller JR, Woods LC, Glover DM: Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature 290:749-753 (1981).
50.
Rovatsos MT, Marchal JA, Romero-Fernández I, Fernández FJ, Giagia-Athanosopoulou EB, Sánchez A: Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res 19:869-882 (2011).
51.
Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E: Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219-228 (2008).
52.
Schmid M, Haaf T, Geile B, Sims S: Chromosome banding in Amphibia. VIII. An unusual XY/XX sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma 88:69-82 (1983).
53.
Schmid M, Feichtinger W, Nanda I, Schakowski R, Visbal Garcia R, et al: An extraordinarily low diploid chromosome number in the reptile Gonatodes taniae (Squamata, Gekkonidae). J Hered 85:255-260 (1994).
54.
Schweizer D: Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307-324 (1976).
55.
Srikulnath K, Matsubara K, Uno Y, Thongpan A, Suputtitada S, et al: Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach. Cytogenet Genome Res 125:213-223 (2009).
56.
Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306 (1972).
57.
Sumner AT: Chromosome Banding (Unwin Hyman, London 1990).
58.
Ventura K, Silva MJJ, Fagundes V, Christoff AU, Yonenaga-Yassuda Y: Non-telomeric sites as evidence of chromosomal rearrangement and repetitive (TTAGGG)n arrays in heterochromatic and euchromatic regions in four species of Akodon (Rodentia, Muridae). Cytogenet Genome Res 115:169-175 (2006).
59.
Vermeesch JR, De Meurichy W, Van Den Berghe H, Marynen P, Petit P: Differences in the distribution and nature of the interstitial telomeric (TTAGGG)n sequences in the chromosomes of the Giraffidae, okapai (Okapia johnstoni), and giraffe (Giraffa camelopardalis): evidence for ancestral telomeres at the okapi polymorphic rob(5;26) fusion site. Cytogenet Cell Genet 72:310-315 (1996).
60.
Wiley JE, Meyne J, Little ML, Stout JC: Interstitial hybridization sites of the (TTAGGG)n telomeric sequence on the chromosomes of some North American hylid frogs. Cytogenet Cell Genet 61:55-57 (1992).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.