Interspaced repetitive DNA elements and segmental duplications have been extensively analyzed in fishes through physical chromosome mapping methods, providing a better comprehension of the structure and organization of the genome of this group. In order to contribute to this scenario, a sequence integration study of different classes of repetitive DNA with high resolution physical chromosome mapping was performed in Sorubim lima. Fluorescence in situ hybridization (FISH) and fiber-FISH with probes for 18S and 5S rRNA genes, TTAGGGn sequence and non-LTR retrotransposon family members Rex1, Rex3 and Rex6 showed that non-LTR elements may be dispersed in the chromosome set with relative concentration in heterochromatic regions, as shown by Rex1, or may even intercalate in 45S rDNA and the telomeric sequence, as found for Rex3 and Rex6. These results reinforce the presence of preferential regions of retroelement accumulation and contribute to a better understanding of the genomic organization of some repetitive DNA classes in fishes.

1.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215:403-410 (1990).
2.
Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815 (2000).
3.
Barros AV, Sczepanski TS, Cabrero J, Camacho JPM, Vicari MR, Artoni RF: Fiber FISH reveals different patterns of high-resolution physical mapping for repetitive DNA in fish. Aquaculture 322:47-50 (2011).
4.
Bellafronte E, Margarido VP, Moreira-Filho O: Cytotaxonomy of Parodon nasus and Parodon tortuosus (Pisces, Characiformes). A case of synonymy confirmed by cytogenetic analyses. Genet Mol Biol 28:710-716 (2005).
5.
Bertollo LAC, Takahashi CS, Moreira-Filho O: Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidae). Brazil J Genet 1:103-120 (1978).
6.
Biémont C, Vieira C: Junk DNA as an evolutionary force. Nature 443:521-524 (2006).
7.
Blackburn EH, Szostak JW: The molecular structure of centromeres and telomeres. Annu Rev Biochem 53:163-194 (1984).
8.
Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN: Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16:203-215 (2008).
9.
Bouneau L, Fisher C, Ozouf-Costaz C, Froschauer A, Jaillon O, et al: An active non-LTR retrotransposon with tandem structure in the compact genome of the pufferfish Tetraodon nigroviridis. Genome Res 13:1686-1695 (2003).
10.
Charlesworth B, Langley CH: The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251-287 (1989).
11.
Charlesworth B, Sniegowski P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215-220 (1994).
12.
Cioffi MB, Bertollo LAC: Chromosomal distribution and evolution of repetitive DNAs in fish, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn 7:197-221 (2012).
13.
Corpet F: Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881-10890 (1988).
14.
Curcio MJ, Derbyshire KM: The outs and ins of transposition: from Mu to kangaroo. Nat Rev Mol Cell Biol 4:865-877 (2003).
15.
Dimitri P, Junakovic N: Revising the selfish DNA hypothesis. New evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15:123-124 (1999).
16.
Diniz D, Laudicina A, Bertollo LAC: Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae). Genet Mol Biol 32:37-41 (2009).
17.
Doolittle WF, Sapienza C: Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601-603 (1980).
18.
Eickbush TH: R2 and related site-specific non-long terminal repeat retrotransposons, in Craig NL, Craigie R, Gellart M, Lambowitz AM (eds): Mobile DNA II, pp 813-835 (American Society of Microbiology, Washington 2002).
19.
Eickbush TH, Eickbush DG: Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477-485 (2007).
20.
Eickbush TH, Furano AV: Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12:669-674 (2002).
21.
Feng Q, Moran JV, Kazazian Jr HH, Boeke JD: Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905-916 (1996).
22.
Ferreira DC, Porto-Foresti F, Oliveira C, Foresti F: Transposable elements as a potential source for understanding fish genome. Mob Genet Elements 1:1-6 (2011).
23.
Finnegan DJ: Transposable elements and DNA transposition in eukaryotes. Curr Opin Cell Biol 2:471-477 (1990).
24.
Fujiwara H, Osanai M, Matsumoto T, Kojima KK: Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res 13:455-467 (2005).
25.
Ijdo JW, Wells RA, Baldini A, Reeders ST: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780 (1991).
26.
Izsvak Z, Ivics Z, Hackett PB: Repetitive elements and their genetic applications in zebrafish. Biochem Cell Biol 75:507-523 (1997).
27.
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462-467 (2005).
28.
Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 303:1626-1632 (2004).
29.
Kidwell MG, Lisch D: Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704-7711 (1997).
30.
Kidwell MG, Lisch DR: Transposable elements and host genome evolution. Trends Ecol Evol 15:95-99 (2000).
31.
Kocher TD: Adaptative evolution and explosive speciation: the cichlid fish model. Nature 5:288-298 (2004).
32.
Langdon T, Seago C, Mende M, Leggett M, Thomas H, et al: Retrotransposon evolution in diverse plant genomes. Genetics 156:313-325 (2000).
33.
Le Rouzic A, Capy P: The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 169:1033-1045 (2005).
34.
Long EO, Dawid IB: Repeated genes in eukaryotes. Ann Rev Biochem 49:727-764 (1980).
35.
López-Flores I, Garrido-Ramos MA: The repetitive DNA content in eukaryotic genomes, in Garrido-Ramos MA (ed): Repetitive DNA. Genome Dyn 7:1-28 (2012).
36.
Lucchini S, Nardi I, Barsacchi G, Batistoni R, Andronico F: Molecular cytogenetics of the ribosomal (18S + 28S and 5S) DNA loci in primitive and advanced urodele amphibians. Genome 36:762-773 (1993).
37.
Lundberg JG, Littmann MW: Family Pimelodidae (long-whiskered catfishes), in Reis RE, Kullander SO, Ferraris Jr. CJ (eds): Check List of the Freshwater Fishes of South and Central America, pp 432-446 (Edipucrs, Porto Alegre 2003).
38.
Malik HS, Burke WD, Eickbush TH: The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793-805 (1999).
39.
Mariotto S, Centofante L, Vicari MR, Artoni RF, Moreira-Filho O: Chromosomal diversification in ribosomal DNA sites in Ancistrus Kner, 1854 (Loricariidae, Ancistrini) from three hydrographic basins of Mato Grosso, Brazil. Comp Cytogen 5:289-300 (2011).
40.
Martins C: Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome, in Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds): Fish Cytogenetics, pp 421-453 (Science Publisher, Inc., Enfield 2007).
41.
Martins C, Galetti PM Jr: Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res 7:363-367 (1999).
42.
Martins C, Galetti PM Jr: Two 5S rDNA arrays in Neotropical fish species: Is it a general rule for fishes? Genetica 111:439-446 (2001).
43.
Martins C, Wasko AP: Organization and evolution of 5S ribosomal DNA in the fish genome, in Williams CR (ed): Focus on Genome Research, pp 335-363 (Nova Science Publishers, New York 2004).
44.
Mazzuchelli J, Martins C: Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica 136:461-469 (2009).
45.
Nakamura TM, Cech TR: Reversing time: origin of telomerase. Cell 92:587-590 (1998).
46.
Nelson JS: Fishes of the World, ed 4 (John Wiley and Sons, New York 2006).
47.
Neto AM, Silva M, Matoso DA, Vicari MR, Almeida MC, et al: Karyotype variability in neotropical catfishes of the family Pimelodidae (Teleostei: Siluriformes). Neotrop Ichthyol 9:1 (2011).
48.
Nirchio M, Oliveira C: Citogenética de Peces (Gráficas Internacional, Porlamar 2006).
49.
Nowak R: Mining treasures from ‘junk DNA'. Science 263:608-610 (1994).
50.
Orgel LE, Crick FHC: Selfish DNA: the ultimate parasite. Nature 284:604-607 (1980).
51.
Pardue ML, DeBaryshe PG: Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485-511 (2003).
52.
Pardue ML, Danilevskaya ON, Lowenhaupt K, Slot F, Traverse KL: Drosophila telomeres: new views on chromosome evolution. Trends Genet 12:48-52 (1996).
53.
Pinkel D, Straume T, Gray J: Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934-2938 (1986).
54.
Raskina O, Barber JC, Nevo E, Belyayev A: Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351-357 (2008).
55.
Sambrook J, Russel DW: Molecular Cloning. A Laboratory Manual, ed 3 (Cold Spring Harbor Laboratory Press, New York 2001).
56.
Schweizer D, Loidl J: A model for heterochromatin dispersion and the evolution of C band patterns. Chromosomes Today 9:61-74 (1987).
57.
Shampay J, Schmitt M, Bassham S: A novel minisatellite at a cloned hamster telomere. Chromosoma 104:29-38 (1995).
58.
Shapiro JA, Von Sternberg R: Why repetitive DNA is essential to genome function. Biol Rev 80:227-250 (2005).
59.
Shibatta OK, Novelli JL, Dias JHP, Britto SGC, Caetano Filho M: Reproduction of duckbill catfish Sorubim lima in captivity (Siluriformes, Pimelodidae) by means of hormonal induction. Semina: Ciências Agrárias, Londrina 32:363-372 (2011).
60.
Slijepcevic P: Telomerase and mechanisms of Robertsonian fusion. Chomosoma 107:136-140 (1998).
61.
Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306 (1972).
62.
Sumner AT: Chromosomes: Organization and Function, Chapter 5:57-69 (Blackwell Science Ltd., Malden 2003).
63.
Suzuki H, Sakurai S, Matsuda Y: Rat 5S rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19. Cytogenet Cell Genet 72:1-4 (1996).
64.
Swarça AC, Fenocchio AS, Dias AL: An update cytogenetic review for species of the families Pseudopimelodidae, Pimelodidae and Heptapteridae (Pisces, Siluriformes). Suggestion of a cytotaxonomical classification. Caryologia 60:338-348 (2007).
65.
Szauter P: An analysis of regional constraints on exchange in Drosophila melanogaster using recombination-defective meiotic mutants. Genetics 106:45-71 (1984).
66.
Timberlake WE: Low repetitive DNA content in Aspergillus nidulans. Science 202:973-975 (1978).
67.
Vicari MR, Almeida MC, Bertollo LAC, Moreira-Filho O, Artoni RF: Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA in the fish Prochilodus lineatus (Characiformes, Prochilodontidae). Genet Mol Biol 29:621-625 (2006).
68.
Vicari MR, Nogaroto V, Noleto RB, Cestari MM, Cioffi MB, et al: Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. J Fish Biol 76:1094-1116 (2010).
69.
Volff JN: Genome evolution and biodiversity in teleost fish. Heredity 94:280-294 (2005).
70.
Volff JN, Korting K, Sweeney K, Schartl M: The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol 16:1427-1438 (1999).
71.
Volff JN, Korting K, Schartl M: Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17:1673-1684 (2000).
72.
Volff JN, Hornung U, Schartl M: Fish retroposons related to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol Genet Genomics 265:711-720 (2001a).
73.
Volff JN, Korting C, Altschmied J, Duschl J, Sweeney K, et al: Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family. Mol Biol Evol 18:101-111 (2001b).
74.
Volff JN, Korting C, Froschauer A, Sweeney K, Schartl M: Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52:351-360 (2001c).
75.
Volff JN, Korting C, Meyer A, Schartl M: Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol 18:427-431 (2001d).
76.
Volff JN, Korting C, Schartl M: Ty3/Gypsy retrotransposon fossils in mammalian genomes: did they evolve into new cellular functions? Mol Biol Evol 18:266-270 (2001e).
77.
Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C: Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19:674-678 (2003).
78.
Weiner AM: Eukaryotic nuclear telomeres: molecular fossils of the RNP world? Cell 52:155-157 (1988).
79.
Zhang X, Eickbush MT, Eickbush TH: Role of recombination in the longterm retention of transposable elements in rRNA gene loci. Genetics 180:1617-1626 (2008).
80.
Ziemniczak K, Barros AC, Rosa KO, Nogaroto V, Almeida MC, et al: Comparative cytogenetics of Loricariidae (Actinopterygii: Siluriformes): emphasis in Neoplecostominae and Hypoptopomatinae. Ital J Zool 1-10 (2012).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.