The karyotype of the Japanese mountain hawk-eagle (Nisaetus nipalensisorientalis) (2n = 66) consists of a large number of medium-sized and small chromosomes but only 4 pairs of dot-shaped microchromosomes, in contrast to the typical avian karyotype with a small number of macrochromosomes and many indistinguishable microchromosomes. To investigate the drastic karyotype reorganization in this species, we performed a molecular cytogenetic characterization employing chromosome in situ hybridization and molecular cloning of centromeric heterochromatin. Cross-species chromosome painting with chicken chromosome-specific probes 1-9 and Z and a paint pool of 20 microchromosome pairs revealed that the N. n. orientalis karyotype differs from chicken by at least 13 fissions of macrochromosomes and 15 fusions between microchromosomes and between micro- and macrochromosomes. A novel family of satellite DNA sequences (NNO-ApaI) was isolated, consisting of a GC-rich 173-bp repeated sequence element. The NNO-ApaI sequence was localized to the C-positive centromeric heterochromatin of 4 pairs of microchromosomes, which evolved concertedly by homogenization between the microchromosomes. These results suggest that the 4 pairs of dot-shaped microchromosomes have retained their genomic compartmentalization from other middle-sized and small chromosomes.

1.
Amaral KF, Jorge W: The chromosomes of the order Falconiformes: a review. Ararajuba 11:65-73 (2003).
2.
Bed'Hom BT, Darré R, Fillon V: Chromosome banding studies in the Bateleur (Terathopiusecaudatus, Aves, Accipitridae). Chromosome Res 6:437-440 (1998).
[PubMed]
3.
Bed'Hom B, Coullin P, Guillier-Gencik Z, Moulin S, Bernheim A, Volobouev V: Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res 11:335-343 (2003).
[PubMed]
4.
Chaves LD, Krueth SB, Reed KM: Characterization of the turkey MHC chromosome through genetic and physical mapping. Cytogenet Genome Res 117:213-220 (2007).
[PubMed]
5.
Christidis L: Animal Cytogenetics 4: Chordata 3b: Aves (Gebrüder Borntraeger, Stuttgart 1990).
6.
Crooijmans RP, Vrebalov J, Dijkhof RJ, van der Poel JJ, Groenen MA: Two-dimensional screening of the Wageningen chicken BAC library. Mamm Genome 11:360-363 (2000).
[PubMed]
7.
de Boer LEM: The somatic chromosome complements of 16 species of Falconiformes (Aves) and the karyological relationships of the order. Genetica 46:77-113 (1976).
8.
de Boer LEM, Sinoo RP: A karyological study of Accipitridae (Aves: Falconiformes), with karyotypic descriptions of 16 species new to cytology. Genetica 65:89-107 (1984).
9.
Delany ME, Robinson CM, Goto RM, Miller MM: Architecture and organization of chicken microchromosome 16: order of the NOR, MHC-Y, and MHC-B subregions. J Hered 100:507-514 (2009).
[PubMed]
10.
de Lucca EJ: Karyotype and nucleolus organizing regions in somatic chromosomes of the white-tailed hawk Buteo albicaudatus (Falconiformes: Aves). Cytobios 42:7-13 (1985).
11.
de Oliveira EHC, Habermann FA, Lacerda O, Sbalqueiro IJ, Wienberg J, Müller S: Chromosome reshuffling in birds of prey: the karyotype of the world's largest eagle (harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). Chromosoma 114:338-343 (2005).
[PubMed]
12.
de Oliveira EHC, de Moura SP, dos Anjos LJS, Nagamachi CY, Pieczarka JC, et al: Comparative chromosome painting between chicken and spectacled owl (Pulsatrix perspicillata): implications for chromosomal evolution in the Strigidae (Aves, Strigiformes). Cytogenet Genome Res 122:157-162 (2008).
[PubMed]
13.
de Oliveira EHC, Tagliarini MM, Rissino JD, Pieczarka JC, Nagamachi CY, et al: Reciprocal chromosome painting between white hawk (Leucopternis albicollis) and chicken reveals extensive fusions and fissions during karyotype evolution of Accipitridae (Aves, Falconiformes). Chromosome Res 18:349-355 (2010).
[PubMed]
14.
Derjusheva S, Kurganova A, Habermann F, Gaginskaya E: High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Res 12:715-723 (2004).
[PubMed]
15.
Griffin DK, Habermann F, Masabanda J, O'Brien P, Bagga M, et al: Micro- and macrochromosome paints generated by flow cytometry and microdissection: tools for mapping the chicken genome. Cytogenet Cell Genet 87:278-281 (1999).
[PubMed]
16.
Groenen MAM, Cheng HH, Bumstead N, Benkel BF, Briles WE, et al: A consensus linkage map of the chicken genome. Genome Res 10:137-147 (2000).
[PubMed]
17.
Gunski RJ, Giannoni ML: Nucleolar organizer regions and a new chromosome number for Rhea americana (Aves: Rheiformes). Genet Mol Biol 21:207-210 (1998).
18.
Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M: Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species. Cytogenet Genome Res 103:173-184 (2003)
[PubMed]
19.
Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, et al: Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569-584 (2001).
[PubMed]
20.
Howell WM, Black DA: Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014-1015 (1980).
[PubMed]
21.
International Chicken Genome Sequencing Consortium (ICGSC): Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716 (2004).
[PubMed]
22.
Itoh Y, Arnold AP: Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 13:47-56 (2005).
[PubMed]
23.
Kalitsis P, Choo KHA: Centromere DNA of higher eukaryotes, in Choo KHA (ed): The Centromere, pp 97-142 (Oxford University Press, New York 1997).
24.
Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA: Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102:326-330 (2003).
[PubMed]
25.
Masabanda JS, Burt DW, O'Brien PCM, Vignal A, Fillon V, et al: Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166:1367-1373 (2004).
[PubMed]
26.
Matsuda Y, Chapman VM: Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16:261-272 (1995).
[PubMed]
27.
Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, et al: Highly conserved linkage homology between birds and turtles: birds and turtle chromosomes are precise counterparts of each other. Chromosome Res 13:601-615 (2005).
[PubMed]
28.
Matzke MA, Varga F, Berger H, Schernthaner J, Schweizer D, et al: A 41-42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes. Chromosoma 99:131-137 (1990).
[PubMed]
29.
Matzke AJM, Varga F, Gruendler P, Unfried I, Berger H, et al: Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey. Chromosoma 102:9-14 (1992).
[PubMed]
30.
McQueen HA, Fantes J, Cross SH, Clark VH, Archibald AL, Bird AP: CpG islands of chicken are concentrated on microchromosomes. Nat Genet 12:321-324 (1996).
[PubMed]
31.
McQueen HA, Siriaco G, Bird AP: Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res 8:621-630 (1998).
[PubMed]
32.
Nanda I, Karl E, Volobouev V, Griffin DK, Schartl M, Schmid M: Extensive gross genomic rearrangements between chicken and Old World vultures (Falconiformes: Accipitridae). Cytogenet Genome Res 112:286-295 (2006).
[PubMed]
33.
Nanda I, Karl E, Griffin DK, Schartl M, Schmid M: Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117:43-53 (2007).
[PubMed]
34.
Nanda I, Schlegelmilch K, Haaf T, Schartl M, Schmid M: Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet Genome Res 122:150-156 (2008).
[PubMed]
35.
Nanda I, Benisch P, Fetting D, Haaf T, Schmid M: Synteny conservation of chicken macrochromosomes 1-10 in different avian lineages revealed by cross-species chromosome painting. Cytogenet Genome Res 132:165-181 (2011).
[PubMed]
36.
Nie W, O'Brien PCM, Ng BL, Fu B, Volobouev V, et al: Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes) - an atypical species with low diploid number. Chromosome Res 17:99-113 (2009).
[PubMed]
37.
Nishida C, Ishijima J, Kosaka A, Tanabe H, Habermann FA, et al: Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res 16:171-181 (2008).
[PubMed]
38.
Nishida-Umehara C, Yoshida MC: The karyotypes of nine golden eagles, Aquila chrysaetos. Chrom Inform Serv 56:22-24 (1994).
39.
Nishida-Umehara C, Tsuda Y, Ishijima J, Ando J, Fujiwara A, et al: The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 15:721-734 (2007).
[PubMed]
40.
Padilla JA, Martinez-Trancόn M, Rabasco A, Fernández-García JL: The karyotype of the Iberian imperial eagle (Aquila adalberti) analyzed by classical and DNA replication banding. Cytogenet Cell Genet 84:61-66 (1999).
[PubMed]
41.
Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H: Low frequency of microsatellites in the avian genome. Genome Res 7:471-482 (1997).
[PubMed]
42.
Raudsepp T, Houck ML, O'Brien PC, Ferguson-Smith MA, Ryder OA, Chowdhary BP: Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes. Cytogenet Genome Res 98:54-60 (2002).
[PubMed]
43.
Sasaki M, Takagi N, Nishida C: Current profiles of avian cytogenetics, with notes on chromosomal diagnosis of sex in birds. the nucleus 27:63-73 (1984).
44.
Sasaki M, Nishida-Umehara C, Tsuchiya K: Interspecific variations in centromeric C-band of the Z chromosome and silver stained nucleolus organizer regions (Ag-NORs) among ten species of owls (Strigiformes). Chromosome Inf Serv 56:19-21 (1994).
45.
Schmid M, Guttenbach M: Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97:101-114 (1988).
[PubMed]
46.
Shetty S, Griffin DK, Graves JAM: Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289-295 (1999).
[PubMed]
47.
Shibusawa M, Nishibori M, Nishida-Umehara C, Tsudzuki M, Masabanda J, et al: Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet Genome Res 106:111-119 (2004a).
[PubMed]
48.
Shibusawa M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y: A comparative karyological study of the blue-breasted quail (Coturnix chinensis, Phasianidae) and California quail (Callipepla californica, Odontophoridae). Cytogenet Genome Res 106:82-90 (2004b).
[PubMed]
49.
Smith J, Bruley CK, Paton IR, Dunn I, Jones CT, et al: Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31:96-103 (2000).
[PubMed]
50.
Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306 (1972).
[PubMed]
51.
Takagi N, Sasaki M: A phylogenetic study of bird karyotypes. Chromosoma 46:91-120 (1974).
[PubMed]
52.
Tanaka K, Suzuki T, Nojiri T, Yamagata T, Namikawa T, Matsuda Y: Characterization and chromosomal distribution of a novel satellite DNA sequence of Japanese quail (Coturnix coturnix japonica). J Hered 91:412-415 (2000).
[PubMed]
53.
Uno Y, Nishida C, Tarui H, Ishishita S, Takagi C, et al: Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 7:e53027 (2012).
[PubMed]
54.
Yamada K, Nishida-Umehara C, Matsuda Y: Characterization and chromosomal distribution of novel satellite DNA sequences of the lesser rhea (Pterocnemia pennata) and the greater rhea (Rhea americana). Chromosome Res 10:513-523 (2002a).
[PubMed]
55.
Yamada K, Shibusawa M, Tsudzuki M, Matsuda Y: Molecular cloning and characterization of novel centromeric repetitive DNA sequences in the blue-breasted quail (Coturnix chinensis, Galliformes). Cytogenet Genome Res 98:255-261 (2002b).
[PubMed]
56.
Yamada K, Nishida-Umehara C, Matsuda Y: A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Chromosoma 112:277-287 (2004).
[PubMed]
57.
Yamada K, Nishida-Umehara C, Ishijima J, Murakami T, Shibusawa M, et al: A novel family of repetitive DNA sequences amplified site-specifically on the W chromosomes in neognathous birds. Chromosome Res 14:613-627 (2006).
[PubMed]
You do not currently have access to this content.